Supplementary Material

Accurate calculations of geometries and singlet–triplet energy differences for active-site models of [NiFe] hydrogenase

Mickaël G. Delcey¹, Kristine Pierloot², Quan M. Phung²,

Steven Vancoillie², Roland Lindh¹, Ulf Ryde³*

¹ Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, P. O. Box 518, SE-751 20 Uppsala, Sweden

² Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

³ Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden

> Correspondence to Ulf Ryde, E-mail: Ulf.Ryde@teokem.lu.se, Tel: +46 – 46 2224502, Fax: +46 – 46 2228648

> > 2014-01-17

	Ni	-S	S-	MUE							
Singlet											
CASPT2 ^a	221.0	221.0	134.0	134.0							
SVWN	-2.1	-2.1	2.4	2.4	2.2						
BP86 ^a	4.0	4.0	2.0	2.0	3.0						
BP86	5.7	5.7	2.0	2.0	3.8						
BP86-D	6.0	6.0	1.9	1.9	3.9						
BLYP	10.5	10.5	1.9	1.9	6.2						
PBE	5.3	5.3	2.0	2.0	3.7						
TPSS	5.8	5.8	1.3 1.3		3.5						
B97-D	10.1	10.1	1.0	1.0	5.5						
$M06-L^a$	6.4	6.4	0.3	0.3	3.3						
$M06^{a}$	5.6	5.6	0.6	0.7	3.1						
TPSSH	6.0	6.0	0.8	0.8	3.4						
B3LYP ^a	8.2	8.2	0.5	0.5	4.4						
B3LYP	9.7	9.7	0.6	0.7	5.2						
B3LYP-D	10.0	10.0	0.5	0.5	5.2						
PBE0	5.8	5.8	0.5	0.5	3.2						
BHLYP	11.4	11.4	-0.7	-0.7	6.1						
Triplet											
CASPT2 ^a	233.5	233.5	133.9	133.9							
SVWN	-10.4	-4.4	2.3	1.9	4.7						
BP86 ^a	-0.8	-0.8	1.8	1.8	1.3						
BP86	-0.5	5.0	1.7	1.7	2.2						
BP86-D	-1.6	4.7	1.7	1.6	2.4						
BLYP	4.1	10.1	1.7	1.7	4.4						
PBE	-0.9	4.8	1.8	1.7	2.3						
TPSS	0.5	5.6	1.1	1.1	2.0						
B97-D	1.8	9.4	0.9	0.9	3.3						
$M06-L^a$	1.5	1.5	0.3	0.3	0.9						
$M06^{a}$	-0.6	-0.6	0.9	0.9	0.7						
TPSSH	1.8	6.5	0.6	0.6	2.4						
B3LYP ^a	4.4	4.4	0.7	0.7	2.6						
B3LYP	5.1	10.1	0.6	0.7	4.1						
B3LYP-D	4.1	9.1	0.5	0.6	3.6						
PBE0	2.7	6.7	0.4	0.5	2.6						
BHLYP	8.2	11.6	-0.6	-0.5	5.2						

Table S1. Ni–S and S–H bond lengths in the optimised structures of $[Ni(SH)_4]^{2-}$ in the singlet (top) and triplet (bottom) states in pm. For CASPT2 the actual values are given, whereas for the DFT methods, errors compared to the CASPT2 results are listed (a negative sign indicates that the DFT distances are too short). MUE is the mean unsigned error.

^a Calculated with the MOLCAS software.

Method	Fe–CN I	Fe–CO	Fe–Ni	Fe–S1	Ni–S1	Ni–S2	Ni–S4 C–	N C-O	S1–H1	S2–H2 S	54–H4 φ
Singlet											
SVWN	185.0	165.8	272.1	220.8	215.6	216.7	11	7.2 117.0) 136.9	136.0	4.9
BP86 ^a	189.2	168.3	288.3	227.0	220.8	222.0	11	7.2 116.8	3 136.4	135.9	5.0
BP86	189.8	168.9	289.2	228.1	222.1	223.3	11	7.8 117.2	7 136.1	135.7	4.4
BP86-D	189.7	169.1	287.4	228.3	222.2	223.1	11	7.8 117.2	7 135.9	135.6	3.4
BLYP	192.7	170.7	299.2	233.1	226.5	227.2	11	7.7 117.8	3 135.9	135.6	4.0
PBE	189.5	168.7	286.9	227.6	221.7	222.9	11	7.9 117.2	7 136.2	135.7	4.3
TPSS	191.1	169.8	287.2	228.3	222.0	223.0	11	7.5 117.3	3 135.2	135.0	4.2
B97-D	191.1	169.0	302.8	232.2	225.2	226.3	11	7.5 117.4	4 134.9	134.8	2.8
M06-L ^a	191.0	169.4	284.8	230.0	222.8	223.1	11	6.5 115.0	5 134.6	134.2	4.0
M06 ^a	192.5	171.7	303.0	229.2	224.3	222.3	11	5.6 114.2	2 135.1	134.8	2.2
TPSSH	191.8	170.0	300.4	229.1	222.7	222.9	11	6.9 116.2	2 134.6	134.6	3.3
B3LYP ^a	192.7	170.4	309.4	232.1	226.4	224.2	11	5.8 114.8	3 135.1	134.9	2.0
B3LYP	193.8	171.8	318.6	233.3	227.6	225.6	11	6.3 115.3	3 134.5	134.6	2.5
B3LYP-D	193.8	172.1	315.2	233.3	227.6	225.6	11	6.3 115.3	3 134.3	134.5	1.7
PBE0	191.3	170.1	310.1	229.1	223.7	222.3	11	6.3 115.0) 134.4	134.4	2.3
BHLYP	199.0	183.6	331.2	237.7	231.8	226.3	11	4.9 112.2	1 133.0	133.2	0.9
Triplet											
SVWN	184.9	166.2	268.8	221.8	223.1	221.8	218.8 11	7.2 117.0) 136.5	135.9	136.3 90
BP86 ^a	188.6	167.6	308.4	229.5	232.4	228.9	224.3 11	7.2 116.2	7 136.1	135.7	135.8 90
BP86	189.3	168.3	307.5	230.3	234.1	230.0	225.4 11	7.8 117.0	5 135.9	135.6	135.7 90
BP86-D	189.3	168.5	305.6	230.8	233.5	229.2	224.7 11	7.8 117.0	5 135.7	135.5	135.7 90
BLYP	192.2	170.0	321.5	235.5	239.7	234.5	229.0 11	7.7 117.0	5 135.7	135.6	135.8 90
PBE	189.0	168.1	304.3	229.8	233.6	229.6	225.1 11	7.9 117.0	5 136.0	135.6	135.8 90
TPSS	190.7	169.2	309.2	230.8	235.0	230.6	226.2 11	7.5 117.2	2 135.1	134.9	135.1 90
B97-D	190.6	168.4	315.7	234.8	237.5	232.4	227.8 11	7.5 117.3	3 134.8	134.8	135.0 90
$M06-L^{a}$	190.6	168.9	313.9	233.7	237.8	231.3	225.9 11	6.5 115.4	4 134.3	134.1	134.3 90
M06 ^a	192.2	171.6	312.5	231.5	236.1	230.1	224.7 11	5.6 114.1	1 134.6	134.7	134.8 90
TPSSH	191.3	169.8	318.2	231.5	237.5	231.2	227.9 11	6.9 116.1	1 134.5	134.5	134.7 90
B3LYP ^a	192.8	171.2	331.1	234.9	240.2	232.4	230.3 11	5.8 114.5	5 134.7	134.7	134.9 90
B3LYP	193.5	171.9	329.5	236.1	242.5	233.7	231.2 11	6.3 115.2	2 134.4	134.5	134.7 90
B3LYP-D	193.5	172.2	324.0	236.2	241.1	232.9	230.5 11	6.3 115.2	2 134.3	134.4	134.7 90
PBE0	190.9	170.3	321.3	231.7	239.3	231.0	229.2 11	6.3 114.9	9 134.4	134.3	134.5 90
BHLYP	200.8	198.2	338.1	242.7	245.9	235.4	235.7 11	4.9 111.7	7 133.1	133.3	133.5 90

Table S2. Symmetry-distinct bond lengths in the optimised structures of the NiFe $[(SH)_2Ni(SH)_2Fe(CO)(CN)_2]^{2-}$ model in the singlet (top) and triplet (bottom) states in pm (C_s symmetry).

^a Calculated with the MOLCAS software.

Figure S1. Active natural orbitals and their occupation number resulting from the CAS(12,12) calculation on the (a) singlet and (b) triplet states of $[Ni(SH)_4^{2-}]$.

Figure S2. Active natural orbitals and their occupation number resulting from the CAS(12,12) calculation on the (a) singlet and (b) triplet states of $[Ni(edt)_2^{2^-}]$.

Figure S3. Active natural orbitals and their occupation number resulting from the RAS(20,4,4;9,2,10) calculation on the triplet state of $[(SH)_2Ni(SH)_2Fe(CO)(CN)_2]^{2-}$.

