Structural and dynamic characteristics of copper(II) amino acid complexes in solutions by combined EPR and NMR relaxation methods

Mikhail S. Bukharov, Valery G. Shtyrlin, Anvar Sh. Mukhtarov, Georgy V. Mamin, Siegfried Stapf, Carlos Mattea, Alexander A. Krutikov, Alexander N. Il'in, Nikita Yu. Serov

Fig. 1S Experimental and simulated EPR spectra of the $Cu(Gly)_2$ and $Cu(L-Glu)_2^2$ - complexes.

Complex	g_{\perp}	g_{\parallel}	g_0	A_{\perp} / G	$A_{\parallel}/{ m G}$	A_0 / \mathbf{G}	$\tau_R{\cdot}10^{11}/s$	A_0^{N} / G	<i>Р</i> 1.0 М КNO ₃
$Cu(Gly)_2$									
trans isomer	2.052	2.267	2.1285	15	160	63.4	3.4	8.9	0.54
cis isomer	2.052	2.267	2.1277	20	180	74.2	3.4	10.5	0.46
$Cu(D-Ala)_2$									
trans isomer	2.052	2.257	2.1252	15	167	64.2	4.2	8.9	0.45
cis isomer	2.052	2.257	2.1240	20	180	75.0	4.2	10.5	0.55
Cu(D-Val) ₂									
trans isomer	2.055	2.257	2.1223	15	163	64.5	5.2	8.6	0.51
cis isomer	2.055	2.255	2.1207	20	183	74.4	5.2	10.3	0.49
$Cu(L-Ser)_2$									
trans isomer	2.057	2.266	2.1262	15	167	64.3	4.8	8.9	0.51
cis isomer	2.057	2.266	2.1262	20	187	75.5	4.8	10.5	0.49
$Cu(L-Asp)_2^{2-}$									
trans isomer	2.065	2.2481	2.1260	15	144	57.9	6.2	9.4	0.40
cis isomer	2.065	2.2483	2.1261	20	174	71.5	6.2	10.2	0.60
$Cu(L-Glu)_2^{2-}$									
trans isomer	2.056	2.2567	2.1229	14	164	63.9	7.8	9.0	0.45
cis isomer	2.056	2.2564	2.1228	20	182	74.0	7.8	10.5	0.55
$Cu(L-LysH)_2^{2+}$									
trans isomer	2.055	2.2552	2.1217	11	166	63.6	8.0	8.7	0.46
cis isomer	2.055	2.2572	2.1224	20	183	74.2	8.0	10.7	0.54
$Cu(L-Pro)_2$									
trans isomer	2.057	2.2523	2.1221	15	161	63.6	5.5	9.3	0.49
cis isomer	2.057	2.2511	2.1217	20	183	74.5	5.5	10.7	0.51
Cu(Sar) ₂									
trans isomer	2.057	2.265	2.1264	15	158	63.7	4.4	9.0	0.74
<i>cis</i> isomer	2.057	2.274	2.1281	20	176	74.2	4.4	9.5	0.26

Table 1S EPR spectra parameters of the copper(II) complexes with amino acids at 295 (1.0 M KNO₃)

Fig. 2S Experimental (points) NMRD profiles for the $Cu(Gly)_2$ aqueous solution and simulated (lines) by different models: a) model 1: inner sphere, b) model 2: inner sphere + second sphere, c) model 3: inner sphere + rotational outer sphere, d) model 4: inner sphere + translational outer sphere (d = 3.03 Å).

Fig. 3S Experimental (points) NMRD profiles for the $Cu(L-Glu)_2^2$ aqueous solution and simulated (lines) by different models: a) model 1: inner sphere, b) model 2: inner sphere + second sphere, c) model 3: inner sphere + rotational outer sphere, d) model 4: inner sphere + translational outer-sphere (d = 2.98 Å).

Fig. 4S Left column: experimental NMRD profiles (points) and their best simulations (lines); right column: experimental (points) and fitted (lines) NMRD profiles with different contributions. The abscissa is $v_{\rm I} = \omega_{\rm I}/2\pi$. $R_{1p} = T_{1p}^{-1}/C_{\rm M}$ is the molar relaxivity, where $C_{\rm M}$ is the metal concentration.

Fig. 5S Left column: experimental NMRD profiles (points) and their best simulations (lines); right column: experimental (points) and fitted (lines) NMRD profiles with different contributions. The abscissa is $v_{\rm I} = \omega_{\rm I}/2\pi$. $R_{1p} = T_{1p}^{-1}/C_{\rm M}$ is the molar relaxivity, where $C_{\rm M}$ is the metal concentration.

cis-Cu(Gly)2·1H2O *E* = -2284.5944 a.u.

cis-Cu(L-Ser)2·1H2O E = -2513.6217 a.u.

trans-Cu(Gly)2·1H2O *E* = -2284.5983 a.u.

trans-Cu(L-Ser)2·1H2O E = -2513.6244 a.u.

trans-Cu(L-Asp)22-·1H2O *E* = -2739.4150 a.u.

cis-Cu(Gly)₂·2H₂O *E* = -2361.0310 a.u.

cis-Cu(L-Ser)2·2H2O *E* = -2590.0608 a.u.

cis-Cu(L-Asp)2²⁻·1H₂O (-O_{ax}) *E* = -2739.4133 a.u.

trans-Cu(Gly)2·2H2O *E* = -2361.0331 a.u.

trans-Cu(L-Ser)2·2H2O E = -2590.0641 a.u.

trans-Cu(L-Asp)22-·1H2O (-Oax) *E* = -2739.4129 a.u.

trans-Cu(L-Glu)22-·2H2O

trans-Cu(L-Pro)2·2H2O *E* = -2594.3948 a.u.

Fig. 6S Structures of some copper(II) bis-complexes with amino acids optimized in GAMESS program package at B3LYP/TZVP level using C-PCM model to account solvent effects.

cis-Cu(L-Glu)22-·1H2O *E* = -2817.9876 a.u.

cis-Cu(L-Pro)2·1H2O *E* = -2517.9539 a.u.

trans-Cu(L-Glu)22-·1H2O *E* = -2817.9909 a.u.

trans-Cu(L-Pro)2·1H2O *E* = -2517.9565 a.u.

cis-Cu(L-Pro)2·2H2O *E* = -2594.3893 a.u.

Fig. 6S (continuation) Structures of some copper(II) *bis*-complexes with amino acids optimized in GAMESS program package at B3LYP/TZVP level using C-PCM model to account solvent effects.

Table 2S Distances between copper(II) and water molecules in optimized structures (r_{O1w} , r_{O2w}) and electric dipole moments of complexes (*D*)

Complex	$r_{ m O1w}$ / Å	$r_{ m O2w}$ / Å	D / Debye
<i>cis</i> -Cu(Gly) ₂ ·1H ₂ O	2.48		0.88
trans- Cu(Gly) ₂ ·1H ₂ O	2.43		0.13
<i>cis</i> -Cu(Gly) ₂ ·2H ₂ O	2.44	3.77	0.78
trans- Cu(Gly) ₂ ·2H ₂ O	2.46	2.99	0.10
<i>cis</i> -Cu(<i>L</i> -Ser) ₂ ·1H ₂ O	2.72		1.00
<i>trans</i> - $Cu(L-Ser)_2 \cdot 1H_2O$	2.62		0.19
<i>cis</i> -Cu(<i>L</i> -Ser) ₂ ·2H ₂ O	2.62	4.13	0.98
trans- Cu(L-Ser) ₂ ·2H ₂ O	2.62	4.14	0.24
cis-Cu(L-Asp) ₂ ² 1H ₂ O	2.47		0.45*
trans-Cu(L-Asp) ₂ ² 1H ₂ O	2.43		0.75*
cis-Cu(L-Asp) ₂ ² 1H ₂ O (-O _{ax})	4.14		0.57^{*}
trans-Cu(L-Asp) ₂ ² ··1H ₂ O (-O _{ax})	4.30		0.89*
cis-Cu(L-Glu) ₂ ² 1H ₂ O	2.54		0.76*
trans- $Cu(L-Glu)_2^{2-1}H_2O$	2.51		0.91^{*}
cis-Cu(L -Glu) ₂ ² ·2H ₂ O	2.55	3.91	0.60^{*}
trans-Cu(L-Glu)2 ²⁻ ·2H ₂ O	2.47	4.03	0.59*
cis-Cu(L-Pro) ₂ ·1H ₂ O	2.48		0.81
trans-Cu(L-Pro)2.1H2O	2.43		0.07
<i>cis</i> -Cu(<i>L</i> - Pro) ₂ ·2H ₂ O	2.55	2.75	0.70
trans-Cu(L- Pro)2·2H2O	2.43	4.09	0.09
<i>cis</i> -Cu(Sar) ₂ ·1H ₂ O	2.46		0.89
trans-Cu(Sar) ₂ ·1H ₂ O	2.45		0.06
<i>cis</i> -Cu(Sar) ₂ ·2H ₂ O	2.55	2.85	0.83
trans-Cu(Sar) ₂ ·2H ₂ O	2.52	3.11	0.05
cis -Cu($\overline{L$ -Ala)_2 \cdot 1H_2O}	2.54		0.91
trans- Cu(L-Ala)2·1H2O	2.46		0.05
cis-Cu(L-LysH) ₂ ²⁺ ·1H ₂ O	2.48		0.78*
trans-Cu(L-LysH) ₂ ²⁺ ·1H ₂ O	2.44		1.37*

* In the case of $Cu(L-Asp)_2^{2-}$, $Cu(L-Glu)_2^{2-}$, and $Cu(L-LysH)_2^{2+}$ the calculated dipole moments are depend on arrangement of uncoordinated charged groups of ligands. So their exact calculations in this model (with only 1 or 2 H₂O) were not possible.

$(L2 \text{ basis set: } H \{8s4p2d\})$	[3s2p1d]; C, N, O {12s8p4	d2f}/[4s3p2d1f]; Cu {23s18	3p13d2f}/[6s5p3d1f])
Atom	x / Å	y / Å	z / Å
Cu	6.47646750	0.98078498	-0.64326375
N	6.79481377	2.56017559	-1.88098785
Н	7.10954725	2.20925236	-2.79821376
С	7.80309834	3.44688593	-1.26445331
Н	8 75970783	3 33909615	-1 79367457
H	7 49866529	4 50244121	-1 31374714
C C	8 07952777	3 06857409	0 19060637
	8 79671867	3 82065840	0.90468325
Ö	7 59824692	1 96604657	0.61391590
Ö	7 27344112	-0 24903912	3 03507443
Н	6 42656601	-0.00687736	3 49651386
H	7 03270276	-0 40128431	2.08706296
C	5 07736539	-1 45587088	-1 18114355
N	5 56427505	-0.28103610	-1 92429637
Н	5.03178953	-2 35763453	-1 80598228
Н	4 06397139	-1 26193684	-0 79800121
C II	5 97576013	-1 70329695	0.03426314
	6 03756891	-2 83945059	0 56729041
ů ů	6 61935774	-0 68187538	0.46006943
н	6 39576034	-0 58816336	-2 45932065
Н	4 86999026	0.13748546	-2 56639549
	4.00555020	1 86529955	0.44653495
н	4.72708508	2 41187943	1 24656344
H	3 73093016	1 28185654	0.67871871
H	5 89471732	3 05828155	-1 97689069
	8 94715911	1 83020697	3 37553068
н	8 32020818	1 09940001	3.09661581
Н	8 86537988	2 50296698	2 66579313
	2 28523524	0.23429659	0.83714891
Н	2.26525524	-0 70849545	1 16178009
н	1 84649595	0 18998985	-0.04721997
	6 19056689	-3 57127168	3 34227869
Н	7 06142001	-3 37717332	3 72929790
H	6 26192960	-3 26670775	2 41086134
	9.21868343	-2.20656239	3 22079007
H	8 46885801	-1.56304465	3 25965047
H	9.98803425	-1.59436295	3.05279299
0	11.42111736	2.98116761	-0.24580455
H	11.26755811	2.03425371	-0.04737463
H	10.66307343	3.43870592	0.16871750
О	5.08455315	5.92192214	0.46986623
Н	6.07031627	6.11630412	0.52170951
Н	4.64328960	6.75460768	0.69737032
0	4.22201075	3.88754649	-1.33261136
Н	4.40360569	4.71139786	-0.82546259
Н	4.21654205	3.16675838	-0.64097268
О	1.15416283	0.33611889	-1.72608345
Н	1.45970618	-0.24380588	-2.47730434
Н	0.18630529	0.27380852	-1.73341504
О	3.30906742	2.42889175	4.06736779
Н	2.42115603	2.10382125	3.76269538
Н	3.64793896	2.97477967	3.31839808
О	4.90911873	3.79627540	2.29721040
Н	5.35496678	4.00843368	3.17038987
Н	4.89895361	4.62758113	1.76757687
0	9.90218263	-2.17916338	-0.80020130
Н	10.30906259	-2.78043662	-1.48194743
Н	9.55116310	-2.77466876	-0.05966999
0	8.10567793	-1.32249624	-2.54008802

Table 3S Atomic coordinates for the $Cu(Gly)_2 \cdot 44H_2O$ complex optimized at the PBE/L2 level (L2 basis set: H {8s4p2d}/[3s2p1d]; C, N, O {12s8p4d2f}/[4s3p2d1f]; Cu {23s18p13d2f}/[6s5p3d1f])

Н	8.63052225	-1.71607884	-1.77597942
н	8 60297095	-0.44525851	-2 63002806
11	0.00277075	-0.44525051	-2.03002000
0	3.895/386/	1.08050685	-4.00435946
Н	3.29894677	1.80031011	-3.62061273
н	3 26208949	0 35190821	-4 20546773
	5 10008277	0.470242(2	4.55040221
0	5.10998377	0.47924363	4.55049321
Н	5.73782760	0.90599785	5.17023684
Н	4 43900575	1 19517034	4 32915720
0	8 95120742	2 70/19655	1.06250726
0	8.83120743	-3.70448033	1.00330730
H	9.02808277	-3.17540332	1.91536254
Н	7.89866994	-3.56792518	0.88786791
0	9 43216084	0.92649980	-2 30772253
0	10 12(07100	0.72072402	1 (4070279
Н	10.1360/188	0.73973492	-1.640/93/8
H	9.87712020	1.29738214	-3.11618740
0	2.57063190	-2.26451999	1.83190542
н	3 17623472	2 17058978	2 66985704
	5.17025472	-2.17030978	2.00985704
Н	1./3369/53	-2.59943727	2.19170288
0	4.00723340	-2.08223648	3.97340572
Н	4 82663965	-2 63900392	3 85602039
T	1.02000000	1 20027069	4 25552202
	4.34309928	-1.2005/908	4.23335205
0	3.66237335	-3.02950173	-4.34247186
Н	3.90486402	-3.67744024	-3.62765570
н	4 48992893	-2 79872215	-4 81662021
	1.10772075 1.06050222	1 0222222	7.01002021
0	2.06059332	-1.03333233	-3.93636/4/
H	2.67967401	-1.84287435	-4.03278555
Н	1.40775840	-1.13202117	-4.64660389
0	1 33138788	-1 81863066	-2 37061448
0	4.00017040	-4.81803000	-2.57001448
Н	4.00917940	-5./1049558	-2.5/596488
Н	3.99990025	-4.62495822	-1.43047100
0	3 79397152	-4 33125135	0 14959755
ц Ц	2 10159227	2 70259670	0.60472214
П	5.19138357	-3.70238079	0.004/2214
H	4.68023559	-3.93220040	0.34283326
0	11.24983637	0.08442341	-0.26727624
н	10 77641714	-0 79114127	-0 38528547
II	12.07625080	0.01022206	0.90909001
П	12.07023980	-0.01032296	-0.80808921
0	7.71727795	6.30908859	0.75069078
Н	8.24448267	6.83586192	0.13136972
Н	8 20698801	5 44317557	0 84211261
	0.07519105	1 45176005	2 06001083
0	0.97518105	1.43170093	2.90001083
Н	1.37283692	1.00334832	2.16854486
Н	0.62671892	0.72741082	3.50241584
0	8 20922329	-3 29924928	-4 25184971
ц Ц	7 40151614	3 30616442	4 81224005
11	0.00552102	-5.50010442	-7.01227003
	8.08553193	-2.54802634	-3.38343619
0	9.59121285	-5.63408262	-1.08265159
Н	8.68744540	-5.67440395	-1.48775181
н	9 44958557	-5 16013432	-0 23204400
	2.77230337 10.70525020	-5.10213452	-0.23204400
0	10.70535020	-3.89254803	-2./983841/
H	10.42825821	-4.64356308	-2.18121255
Н	9.97108174	-3.84813951	-3.44366633
0	7 68138470	1 42838111	-4 66859819
0	(.0(202052	1.02020264	-4.00057017
Н	6.96382052	1.83028364	-5.23941867
H	8.52238831	1.92397307	-4.79269087
0	5.44972398	2.10355417	-5.97910416
н	5 18014082	3 02832268	-6 08675502
	4.01602002	1 72171717	5 20010044
	4.81623082	1./31/1/1/	-5.29918844
0	10.43437713	2.06974491	-4.58532871
Н	11.19805198	2.41521142	-4.02130894
н	10 80/23202	1 31835601	-5 10005468
	0.0072025	0.00501047	-5.10005400
U	8.293/0035	-0.9059104/	-3.90291343
H	8.04172187	-0.07452530	-5.39115814
Н	8.48099368	-1.59870545	-5.22958578
0	12 46298164	-1 88056321	-3 86926666
U U		1.000000021	2.00720000

Н	11.95070477	-2.62941091	-3.48773092
Н	11.88976448	-1.47881574	-4.55867085
О	11.00304574	-0.40385608	-5.90489363
Н	11.44308268	-0.44777950	-6.76804662
Н	10.04230274	-0.60227170	-6.08005568
О	11.03322613	-0.17195362	2.69240927
Н	11.19605388	-0.05542072	1.73188168
Н	10.47600788	0.59833489	2.94009829
О	7.24248402	-5.47963880	-2.58000218
Н	7.55654835	-4.76456145	-3.17545043
Н	6.32924099	-5.21638987	-2.34277426
O	12.38257344	2.69342393	-2.87025524
Н	12.78907472	1.81359468	-2.69986199
Н	12.00675806	2.94018537	-1.98758649
0	13.23341838	0.01103984	-2.18149157
Н	14.16721633	-0.16067216	-1.98489602
Н	12.95152851	-0.72540688	-2.81807181
0	6.03365970	-2.55108574	-5.94542268
Н	5.91128032	-2.98416679	-6.80486690
Н	6.67118846	-1.80886974	-6.11727539
0	2.22900059	2.84939312	-2.89667421
Н	2.82607180	3.36492249	-2.29437015
Н	1.77836344	2.19903136	-2.32012418
0	7.33059066	2.18831184	5.50232962
Н	7.99805249	2.12984354	4.74945918
Н	7.86263254	2.23571774	6.31147209
0	5.60689938	4.23189761	4.84820541
Н	4.75351952	3.85693065	5.13368219
Н	6.27315562	3.55982088	5.14800963

Table 4S Atomic coordinates for the *cis*-Cu(Gly)₂ \cdot 1H₂O structure optimized at the B3LYP/TZVP level using C-PCM model

Atom	x / Å	y / Å	z / Å
Cu	6.5057009867	0.5627768302	0.3076671575
Ν	8.3283680746	1.1693522443	-0.4151607084
Н	8.9114788593	0.3508898163	-0.5679763296
С	8.9528484455	2.0642178728	0.5928805826
Н	10.0307768383	1.9156021433	0.6492488314
Н	8.7775837311	3.1000718067	0.2998824307
С	8.3305330706	1.8677237113	1.9810092786
О	8.8840453068	2.3644801844	2.9641977328
О	7.2219594037	1.2101486693	2.0180920342
С	4.6882892732	-1.2712065538	-0.9929263696
Ν	5.7787970312	-0.3395112324	-1.3819927277
Н	5.0678748349	-2.2930739432	-1.0102951477
Н	3.8523859210	-1.2199584778	-1.6903923177
С	4.1820659139	-0.9899506815	0.4254591617
О	3.1644630405	-1.5663665592	0.8171360945
Ο	4.8796706091	-0.1697311996	1.1336008243
Н	6.4960046145	-0.8349312840	-1.9012933524
Н	5.4228165197	0.3790689620	-2.0059042040
О	5.5775909809	2.8241228259	-0.1105035640
Н	4.6689481363	2.9486342876	-0.4097160613
Н	5.6225725900	3.2813917549	0.7379267019
Н	8.2532258182	1.6402488226	-1.3119400477

Atom	x / Å	y / Å	z / Å
Cu	4.8526688037	0.2100747857	0.8406303127
Ν	5.0800297677	0.5104572811	2.8435795538
С	3.6729776690	-1.1675407927	-1.3948441482
Ν	4.8304225908	-0.2762227321	-1.1422314973
Н	3.9115986197	-1.9518477106	-2.1132884445
Н	2.8544767741	-0.5800891804	-1.8128747656
С	3.1623459055	-1.8050985305	-0.0953784672
О	2.3517591216	-2.7310850341	-0.1581142290
О	3.6041740469	-1.2931818268	1.0044060195
Н	5.7017043633	-0.7638587972	-1.3316055506
Н	4.8168534711	0.5357976459	-1.7510211971
О	3.1748224461	1.9700251247	0.7639878119
Н	3.4404041895	2.8065519134	0.3647351430
Н	2.2393637363	1.8608821619	0.5586897683
Н	4.2860466175	1.0925438802	3.0960423443
Н	5.0133029728	-0.3391832835	3.3939700440
С	6.3545258315	1.2253174863	3.0813861432
С	6.8493348482	1.9175515965	1.8045929963
О	6.2722791204	1.5666382522	0.7046535394
О	7.7674936006	2.7368795216	1.8814780069
Н	6.2718851581	1.9561828149	3.8853529613
Н	7.1155303457	0.5012054236	3.3758536549

Table 5S Atomic coordinates for the *trans*-Cu(Gly)₂·1H₂O structure optimized at the B3LYP/TZVP level using C-PCM model

Table 6S Atomic coordinates for the *cis*-Cu(Gly)₂·2H₂O structure optimized at the B3LYP/TZVP level using C-PCM model

Atom	x / Å	y / Å	z / Å
Cu	-0.3977358775	0.2538934320	0.0343404709
Ν	1.5849487461	0.3892316841	-0.4025477697
Н	1.9397503880	-0.5546060071	-0.2169840348
С	2.2111313501	1.3722828885	0.5104338004
Н	3.2151652372	1.0674653705	0.8073852889
Н	2.2956293828	2.3333968425	0.0009631523
С	1.3502390035	1.5864319335	1.7615979869
Ο	1.8166847604	2.2056418297	2.7212664893
Ο	0.1488044077	1.1171276881	1.7153140353
О	2.2713003578	-2.3807417410	0.3685141316
Н	1.9738801285	-2.7644454493	1.2011819233
Н	2.4022138006	-3.1241268425	-0.2309436585
С	-2.2092615037	-1.6281553113	-1.2218100694
Ν	-1.1146529816	-0.7118849682	-1.6325312184
Н	-1.8114718839	-2.6406005632	-1.1422440633
Н	-3.0151467830	-1.6470348309	-1.9557584751
С	-2.7729880860	-1.2447248596	0.1503956292
О	-3.8058381506	-1.7923254982	0.5457583256
О	-2.0955035349	-0.3785692121	0.8198300786
Н	-0.4193752992	-1.2163280212	-2.1716017462
Н	-1.4763874550	0.0121038416	-2.2471005632
О	-1.0150893882	2.4653437584	-0.8025535903
Н	-1.8157978501	2.6999684394	-1.2866682285
Н	-0.9967712629	3.0569862856	-0.0411316023
Н	1.7807021991	0.6079154831	-1.3739544130

Atom	x / Å	y / Å	z / Å
Cu	0.1365438763	-0.1409301973	-0.1025088699
Ν	0.0696799217	0.4242123545	1.8495175281
О	1.9092395864	-1.7952591139	0.3019437340
Н	1.7648436886	-2.7482687726	0.3280396785
Н	2.8110482263	-1.6716689873	-0.0149130714
С	-1.3564648110	-1.1729757823	-2.3317154718
Ν	-0.0594313196	-0.4919604371	-2.1033720343
Н	-1.2996822924	-1.9024870861	-3.1390174945
Н	-2.0995906149	-0.4259208113	-2.6149695093
С	-1.8598847502	-1.8561129188	-1.0522995763
О	-2.7839867717	-2.6708062382	-1.1319475052
О	-1.2883622456	-1.5006771090	0.0455767171
Н	0.7122301718	-1.1010985247	-2.3616399183
Н	0.0260424086	0.3432492112	-2.6739819580
О	-1.9831764648	1.9211236120	0.3093840433
Н	-1.9437373681	2.8013048549	-0.0824891755
Н	-2.9005413864	1.6405077358	0.2136234752
Н	-0.7606475669	1.0138897275	1.8523241653
Н	-0.0670340937	-0.3284057962	2.5149705125
С	1.2859915287	1.2081912328	2.1468992732
С	1.9123267312	1.7756467414	0.8654894474
О	1.4788302820	1.2877308335	-0.2467881139
О	2.8000940114	2.6285803648	0.9543790189
Н	1.0931279762	2.0234885557	2.8456778473
Н	2.0271412760	0.5499465508	2.6029172576

Table 7S Atomic coordinates for the *trans*-Cu(Gly)₂·2H₂O structure optimized at the B3LYP/TZVP level using C-PCM model