Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A highly efficient fullerene acceptor for polymer solar cells

Dan He,‡ Chuantian Zuo,‡ Shan Chen, Zuo Xiao* and Liming Ding*

National Center for Nanoscience and Technology, Beijing 100190, China.

E-mail: opv.china@yahoo.com, xiaoz@nanoctr.cn

- 1. General characterization
- 2. Synthetic procedures and spectral data
- 3. Device fabrication and measurements
- 4. NMR spectra
- 5. *J-V* curves
- 6. Space charge limited current (SCLC) measurements
- 7. External quantum efficiency (EQE) spectra

1. General characterization

All reagents were purchased from Aladdin Co., Acros Co. and other commercial suppliers. NMR spectra were measured on a Bruker Avance-400 spectrometer. High resolution ESI mass spectra were measured by a Bruker Apex IV FTMS spectrometer. Absorption spectra were recorded on a Shimadzu UV-1800 spectrophotometer. Cyclic voltammetry (CV) was conducted on a Shanghai Chenhua CHI620D voltammetric analyzer. All measurements were carried out in a one-compartment cell under argon, equipped with a glassy-carbon working electrode, a platinum wire counter electrode, and a Ag/Ag⁺ reference electrode. Measurements were performed in ODCB/CH₃CN (9:1) solution containing tetrabutylammonium hexafluorophosphate (0.1 M) as a supporting electrolyte at 25 °C with a scan rate of 0.1 V/s. All potentials were corrected against Fc/Fc⁺. AFM was performed on a Dimension 3100 microscope (Veeco) (tapping mode). X-ray diffraction (XRD) was performed using a 2 kW Rigaku D/max-2500 X-ray diffractometer in reflection mode (40 kV, 200 mA, Cu Kα radiation).

2. Synthetic procedures and spectral data

OQMF70 and bis-OQMF70. To a solution of C₇₀CH₂ (650 mg, 0.76 mmol) in ODCB (130 mL) was added 1,4-dihydrobenzo[d][1,2]oxathiine 3-oxide (325 mg, 1.93 mmol). The mixture was stirred at 100 °C for 4 h. Then the reaction solution was cooled to room temperature and poured into methanol. The crude product was collected by filtration and purified through a silica gel column with CS₂:hexane (1:1) as the eluent. The first band was the unreacted C₇₀CH₂. The second band was collected to give OQMF70 (380 mg, yield: 52%). The third band was collected to give bis-OQMF70 (276 mg, yield: 34%).

OQMF70. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.10-7.55 (m, 4H, Ar), 2.42-4.14 (m, 6H, CH_2). ESI-HRMS (+): $C_{79}H_{10}$ [M⁺] calc. 958.0783, found 958.0754.

bis-OQMF70. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.21-7.65 (m, 8H, Ar), 2.15-4.12 (m, 10H, C*H*₂). ESI-HRMS (+): C₈₇H₁₈ [M⁺] calc. 1062.1409, found 1062.1435.

3. Device fabrication and measurements

Conventional solar cells

Patterned ITO glass with a sheet resistance of 15 Ω sq⁻¹ was cleaned by ultrasonics in detergent, deionized water, acetone, isopropanol sequentially and then treated with UV-ozone for 10 min. A 30 nm thick poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS, CleviosTM P VP AI 4083) layer was formed on ITO substrates by spin coating an aqueous dispersion onto ITO glass (4000 rpm for 30 s). PEDOT:PSS coated substrates were dried at 150 °C for 10 min, and then the substrates were transferred into a N₂-filled glove box. A P3HT:fullerene (w/w, 1:0.6) blend in ODCB (24 mg/mL) was spin-coated onto PEDOT:PSS layer (1200 rpm for 60 s). Then the films were annealed at 150 °C for 10 min. The thicknesses of the active layers (~100 nm) were measured by a KLA Tencor D-120 profilometer. Finally, Ca (~10 nm) and Al (~100 nm) were thermally evaporated under a shadow mask (pressure ca. 10⁻⁴ Pa). The effective area for the device is 4 mm². J-V curves were measured using a computerized Keithley 2420 SourceMeter. Device characterization was done in air using a Xenon-lamp-based solar simulator (Newport, 91159A, AM 1.5G, 100 mW/cm²). Solar simulator illumination intensity was determined using a monocrystalline silicon cell (Oriel 91150, 2 × 2 cm) calibrated by NREL. The external quantum efficiency (EQE) was measured using a QE-R3011 measurement system (Enli Technology, Inc.).

Inverted solar cells

ZnO precursor was prepared according to literature.^[1] ZnO precursor solution was spin-coated onto ITO glass (4000 rpm for 30 s). The films were annealed at 200 °C for 30 min in air. The thickness of ZnO film is about 30 nm. A P3HT:fullerene (w/w, 1:0.6) blend in ODCB (24 mg/mL) was spin-coated onto ZnO layer (1200 rpm for 60

s). Then the films were annealed at 150 °C for 10 min. MoO_3 (~6 nm) and Ag (~80 nm) was successively evaporated onto the active layer under a shadow mask (pressure ca. 10^{-4} Pa).

Electron-only devices

The structure of electron-only devices is ITO/Al/active layer/Ca/Al. Al (~100 nm) was first evaporated onto glass substrates. A P3HT:fullerene (w/w, 1:0.6) blend in ODCB (24 mg/mL) was spin-coated onto Al (1200 rpm for 60 s). Then the films were annealed at 150 °C for 10 min. Ca (~10 nm) and Al (~100 nm) were thermally evaporated under a shadow mask (pressure ca. 10⁻⁴ Pa). *J-V* curves were measured using a computerized Keithley 2420 SourceMeter.

4. NMR spectra

Figure S1. ¹H NMR spectrum for OQMF70 in CDCl₃.

Figure S2. ¹H NMR spectrum for bis-OQMF70 in CDCl₃.

5. *J-V* curves

Figure S3. J-V curves for OQMF70:P3HT and bis-OQMF70:P3HT cells (PC₇₁BM:P3HT cells shown as reference).

6. Space charge limited current (SCLC) measurements

Charge carrier mobility was measured by SCLC method. The mobility was determined by fitting the dark current to the model of a single carrier SCLC, which is described by:

$$J = \frac{9}{8} \varepsilon_0 \varepsilon_r \mu \frac{V^2}{d^3}$$

where J is the current density, μ is the zero-field mobility of electrons, ε_0 is the permittivity of the vacuum, $\varepsilon_{\rm r}$ is the relative permittivity of the material, d is the thickness of the blend film, and V is the effective voltage, $V = V_{\rm appl} - V_{\rm bi}$, where $V_{\rm appl}$ is the applied voltage, and $V_{\rm bi}$ is the built-in potential determined by electrode workfunction difference. Figure S4 (a) shows J-V curves for the electron-only devices. The mobility was calculated from the slope of $J^{1/2}$ -V curves.

Figure S4. *J-V* curves (a) and the corresponding $J^{1/2}$ -*V* curves (b) for electron-only devices (in dark). The thicknesses for PC₇₁BM:P3HT, OQMF70:P3HT and bis-OQMF70:P3HT blend films are 94 nm, 100 nm and 97 nm, respectively.

7. External quantum efficiency (EQE) spectra

Figure S5. EQE spectra for OQMF70:P3HT and bis-OQMF70:P3HT solar cells.

Reference

[1] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, *Adv. Mater.*, 2011, **23**, 1679.