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Figure S1: RMSD of T203V/S205A and T203V/S205V. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: RMSF of T203V/S205A and T203V/S205AV. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: The steady-state emission of wt-GFP in H2O and D2O. This figure shows that the 

KIE of the wt-GFP is ≈5. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4: The average number of water molecules around each side chain Cβ carbon (within 

4 Å) of Glu222 for the GFP double mutant T203V-S205A along the MD simulations. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5: The average number of water molecules around each side chain Cβ carbon (within 

4 Å) of residues along the two β-strands in the “hole” domain for the GFP double mutant 

T203V-S205A along the MD simulations. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6: The Cα backbone-backbone distances between two opposite residues in the two β-

strands for the GFP double mutant T203V-S205A during the MD simulations. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7: RMSD of the fragments of the two β-strands in the “hole” domain of the GFP double 

mutant T203V-S205A along the MD simulations.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8: The distance between the O atom of the hydroxyl phenol group of the chromophore 

and the nearby O atom of the water molecule during the MD simulations. Two water molecules 

that are replaced during the simulations of 60 ns for T203V/S205A. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9: The average number of water molecules around each side chain Cβ carbon (within 

4 Å) of residues along the two β-strands in the “hole” domain for the wt-GFP. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S10: The average number of water molecules around each side chain Cβ carbon (within 

4 Å) of residues along the two β-strands in the “hole” domain for the GFP double mutant 

T203V/S205V. 



Estimation of pKa of Asn146  

It is extremely difficult to estimate the "apparent pKa" of a given amino acid in a protein, because 

in addition to factoring in changes due to the local side-chain environment, one has to average 

over all the possible charge states of all interacting titratable groups, as a function of pH, in order 

to determine long-range effects. 

However, it is possible to estimate the shift in "intrinsic pKa" for Asn146, due to its immediate 

environment. We used the solvation/desolvation thermodynamic cycle procedure and the APBS 

package
1-3

 to estimate the change in Asn146 intrinsic pKa. The shift values that were obtained 

are positive and between 0.2 and 1.0, depending on the particular force field used to assign 

partial atomic charges (CHARMM, AMBER and PARSE). All other parameters were left at the 

recommended values
1-3

. Therefore, one can add to the textbook value for the Asn side chain in 

solution (16-17) this small value to roughly estimate the Asn146  pKa to be greater than 16. 

As an independent check of this result, we further estimated the side chain pKa of a hypothetical 

mutation, Asn146 to Asp146 in silico, using the programs PROPKA
4-7

 and PDB2PQR
8-9

 (which 

use completely different procedures to estimate pKa values) and the result agrees with that 

obtained from APBS for Asn146. The pKa of the hypothetical Asp146 is estimated by PROPKA 

to be 4.3, and is thus elevated by less than one unit compared to the model amino acid side chain, 

assumed by PROPKA to be 3.8. 

In summary, as expected because of the overall large negative charge on GFP (about -7 at pH 

7.0) and the immediate environment of Asn146, there is no possibility that Asn146 is charged 

under ordinary circumstances. 
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