Electronic Supplementary Information for:

Is the contribution of *cis* and *trans* protonated 5-methylcytosine-SO₃⁻ isomers equal to thymine-SO₃⁻ under bisulfite conditions? A theoretical perspective

Lingxia Jin^{a,b} Lu Wang^a Caiying Zhang^a Wenliang Wang^{a,*} Suotian Min^b Daodao Hu^a

^aKey Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062

^bSchool of Chemical and Environmental Sciences, Shaanxi University of Technology, Hanzhong 723001

^{*}Corresponding author: Wenliang Wang Tel: +86-29-81530815, Fax: +86-81530727 E-mail: wlwang@snnu.edu.cn.

Table S1 Relative Energies (in kJ·mol⁻¹) for the Two Water-mediated Hydrolytic Deamination of CytN3⁺-SO₃⁻ with the HSO₃⁻ Group Both in the Gas and Aqueous Phases

Table S2 Relative Energies (in kJ·mol⁻¹) for One Water-mediated Path A (1w-path A) Both in the Gas and Aqueous Phases

Table S2 Relative Energies (in kJ·mol⁻¹) for One Water-mediated Path A' (1w-path A') Both in the Gas and Aqueous Phases

Fig. S1 Optimized structures of *cis and trans* 5-MeCytN3⁺-SO₃⁻ isomers in the aqueous phase are at B3LYP/6-311++G(d,p) level.

Fig. S2 Optimized structures (bond distances in Å) in the aqueous phase for the hydrolytic deamination of *cis* 5-MeCytN3⁺-SO₃⁻ isomer with the HSO₃⁻ group (path A-the HSO₃⁻ group toward the left side of *cis* 5-MeCytN3⁺-SO₃⁻ isomer) at the B3LYP/6-311++G(d, p) level.

Fig. S3 Optimized structures (bond distances in Å) in the aqueous phase for the hydrolytic deamination of *cis* 5-MeCytN3⁺-SO₃⁻ isomer with the HSO₃⁻ group (path B-the HSO₃⁻ group toward the above side of *cis* 5-MeCytN3⁺-SO₃⁻ isomer) at the B3LYP/6-311++G(d, p) level.

Fig. S4 Optimized structures (bond distances in Å) in the aqueous phase for the hydrolytic deamination of *cis* 5-MeCytN3⁺-SO₃⁻ isomer with the HSO₃⁻ group (path C-the HSO₃⁻ group toward the right side of *cis* 5-MeCytN3⁺-SO₃⁻ isomer) at the B3LYP/6-311++G(d, p) level.

Fig. S5 Optimized structures (bond distances in Å) in the aqueous phase for the hydrolytic deamination of *trans* 5-MeCytN3⁺-SO₃⁻ isomer with the HSO₃⁻ group (path A'-the HSO₃⁻ group toward the left side of *trans* 5-MeCytN3⁺-SO₃⁻ isomer) at the B3LYP/6-311++G(d, p) level.

Fig. S6 Optimized structures (bond distances in Å) in the aqueous phase for the hydrolytic deamination of *trans* 5-MeCytN3⁺-SO₃⁻ isomer with the HSO₃⁻ group (path B'-the HSO₃⁻ group toward the above side of *trans* 5-MeCytN3⁺-SO₃⁻ isomer) at the B3LYP/6-311++G(d, p) level.

Fig. S7 Optimized structures (bond distances in Å) in the aqueous phase for the hydrolytic deamination of *trans* 5-MeCytN3⁺-SO₃⁻ isomer with the HSO₃⁻ group (path C'-the HSO₃⁻ group toward the right side of *trans* 5-MeCytN3⁺-SO₃⁻ isomer) at the B3LYP/6-311++G(d, p) level.

Fig. S8 Optimized stationary structures (bond distances in Å) in the aqueous phase for two water-

mediated path A (2w-path A) are at B3LYP/6-311++G(d,p) level.

Fig. S9 Optimized stationary structures (bond distances in Å) in the aqueous phase for two watermediated path A' (2w-path A') are at B3LYP/6-311++G(d,p) level.

System	MP2//B3LYP ^b			PCM ^c		
	ΔE^{g}	ΔG^{g}	$\Delta G^{\mathrm{g} \neq}$	$\Delta G^{ ext{s-a}}$	$\Delta G^{ ext{s-a} eq}$	
2w-path A						
R^{d} +2H ₂ O	0.00	0.00		0.00		
2w-A-RC	-354.24	-192.44		35.03		
2w-A-TS1	-263.53	-94.08		120.30		
2w-A-IM1	-265.49	-101.21		102.75		
2w-A-TS2	-193.38	-25.03		190.93		
2w-A-IM2	-322.09	-155.50		60.41		
2w-A-TS3	-334.34	-163.09		106.18		
2w-A-P	-376.69	-218.57		59.82		
2w-A-RC→2w-A-IM1			98.36		85.27	
2w-A-IM1→2w-A-IM2			76.18		88.18	
2w-A-IM1→2w-A-P			-7.59		45.77	

Table S1 Relative Energies^a (in kJ·mol⁻¹) for the Two Water-mediated Hydrolytic Deamination of

 $CytN3^+\mbox{-}SO_3^-$ with the HSO_3^- Group Both in the Gas and Aqueous Phases

 ${}^{a}\Delta G^{\varrho}, \Delta E^{\varrho}, \text{ and } \Delta G^{\varrho \neq}$ are relative free energy, relative energy, and activation free energy in the gas phase, respectively. ΔG^{s-a} and $\Delta G^{s-a\neq}$ are relative free energy and activation free energy with PCM model based on the optimized geometries in the aqueous phase, respectively. b MP2/6-311++G(3df,3pd)//B3LYP/ 6-311++G(d,p) level. c MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) with PCM model. d denotes CytN3⁺-SO₃⁻ +H₂O+HSO₃⁻.

Table S2 Relative Energies a (in kJ·1	ol ⁻¹) for One	Water-mediated I	Path A (1w	-path A) Both in
---------------------------------------	----------------------------	------------------	------------	---------	-----------

System	MP2//B3LYP ^b			PCM ^c		
	$\Delta E^{ m g}$	ΔG^{g}	$\Delta G^{\mathrm{g} \neq}$	$\Delta G^{ ext{s-a}}$	$\Delta G^{ ext{s-a} eq}$	
1w-path A						
R ^d +H ₂ O	0.00	0.00		0.00	0.00	
1w-A-RC	-219.84	-203.55		-112.38	6.35	
1w-A-TS1	-273.20	-86.97		-33.94	98.02	
1w-A-IM1	-252.75	-144.06		-67.80	61.65	
1w-A-TS2	-273.34	-120.17		-60.44	73.26	
1w-A-IM2	-280.36	-145.28		-83.52	45.82	
1w-A-TS3	-275.23	-150.61		-81.73	48.65	
1w-A-IM3	-274.50	-147.54		-74.19	54.25	
1w-A-TS4	-286.76	-145.54		-72.23	58.34	
1w-A-IM4	-255.98	-154.06		-116.18	16.71	
1w-A-TS5	-284.74	-119.72		-64.07	74.62	
1w-A-IM5	-289.85	-153.08		-92.06	41.02	
1w-A-TS6	-283.89	-155.69		-101.78	31.37	
1w-A-IM6	-256.16	-151.06		-101.87	30.36	
1w-A-TS7	-348.36	-123.07		-72.65	59.57	
1w-A-P	-322.97	-224.89				
1w-A-RC→1w-A-IM1			116.58		91.67	
1w-A-IM1→1w-A-IM2			23.89		11.61	
1w-A-IM2→1w-A-IM3			-5.33		2.83	
1w-A-IM3→1w-A-IM4			2.00		4.09	
1w-A-IM4→1w-A-IM5			34.34		57.91	
1w-A-IM5→1w-A-IM6			-2.61		-9.65	
1w-A-IM6→1w-A-P			27.99		29.21	

the Gas and Aqueous Phases

 $^{a}\Delta G^{g}$, ΔE^{g} , and $\Delta G^{g\neq}$ are relative free energy, relative energy, and activation free energy in the gas phase, respectively. $\Delta G^{s\cdot a\neq}$ and $\Delta G^{s\cdot a\neq}$ are relative free energy and activation free energy with PCM model based on the optimized geometries in the aqueous phase, respectively. $^{b} MP2/6-311++G(3df,3pd)//B3LYP/ \ 6-311++G(d,p) \ level. \ ^{c} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd$ denotes cis 5-MeCytN3⁺-SO₃⁻ isomer +H₂O+HSO₃⁻.

Γable S3 Relative Energies ^{<i>a</i>}	(in kJ·mol ⁻¹) for One Water-mediated Path A' (lw-path A')	Both in
• /	`			

System	MP2//B3LYP ^b			PCM ^c		
	$\Delta E^{ m g}$	$\Delta G^{ m g}$	$\Delta G^{\mathrm{g} \neq}$	$\Delta G^{ ext{s-a}}$	$\Delta G^{ ext{s-a} eq}$	
1w-path A'						
R^{d} + $H_{2}O$	0.00	0.00		0.00		
1w-A'-RC	-312.25	-195.26		-1.40		
1w-A'-TS1	-218.69	-84.70		107.56		
1w-A'-IM1	-276.65	-145.48		66.70		
1w-A'-TS2	-256.93	-122.31		75.31		
1w-A'-IM2	-277.22	-146.37		54.26		
1w-A'-TS3	-284.23	-151.97		56.75		
1w-A'-IM3	-279.04	-149.14		59.95		
1w-A'-TS4	-280.65	-149.00		34.35		
1w-A'-IM4	-290.38	-155.58		47.57		
1w-A'-TS5	-260.05	-122.42		77.10		
1w-A'-IM5	-287.49	-153.27		47.02		
1w-A'-TS6	-292.48	-156.21		11.61		
1w-A'-IM6	-286.22	-151.22		35.43		
1w-A'-TS7	-244.57	-110.52		100.24		
1w-A'-P	-352.41	-227.43		-25.25		
1w-A'-RC→1w-A'-IM1			110.56		108.96	
1w-A'-IM1→1w-A'-IM2			23.17		8.61	
1w-A'-IM2→1w-A'-IM3			-5.60		2.49	
1w-A'-IM3→1w-A'-IM4			0.14		-25.60	
1w-A'-IM4→1w-A'-IM5			33.16		29.53	
1w-A'-IM5→1w-A'-IM6			-2.94		-35.41	
1w-A'-IM6→1w-A'-P			40.70		64.81	

the Gas and Aqueous Phases

 $^{a}\Delta G^{g}, \Delta E^{g}, \text{ and } \Delta G^{g\neq}$ are relative free energy, relative energy, and activation free energy in the gas phase, respectively. ΔG^{s-a} and $\Delta G^{s-a\neq}$ are relative free energy and activation free energy with PCM model based on the optimized geometries in the aqueous phase, respectively. $^{b} MP2/6-311++G(3df,3pd)//B3LYP/ \ 6-311++G(d,p) \ level. \ ^{c} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) \ with \ PCM \ model. \ ^{d} MP2/6-311++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd)//B3LYP/6-31++G(3df,3pd$ denotes trans 5-MeCytN3+-SO3- isomer +H2O+HSO3-.

^{*a*} 5-H *cis* to 6-SO₃⁻(both the CH₃ and SO₃ occupy equatorial positions); ^{*b*} 5-H *trans* to 6-SO₃⁻ (the CH₃ occupies axial position and the SO₃ occupies equatorial position); ^{*c*} 5-H *cis* to 6-SO₃⁻ (both the CH₃ and SO₃ occupy axial positions).

We have designed various initial deamination routes of *third* $5\text{-MeCytN3^+-SO_3^-}$ isomer for optimization, but the hydrolytic product of each step is always similar to that of *cis* $5\text{-MeCytN3^+-}SO_3^-$ isomer, which may result from the low free energy barrier of the conversion between *third* and *cis* $5\text{-MeCytN3^+-SO_3^-}$ isomers.¹ Thus, our interest has been focused on the hydrolytic deamination routes of *cis* and *trans* $5\text{-MeCytN3^+-SO_3^-}$ isomers in the this study.

(1) L. X. Jin, W. L. Wang, D. D Hu and S. T. Min, J. Phys. Chem. B., 2013, 117, 3.

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Fig. S7

Fig. S8

Fig. S9