Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Microsolvation of the Acetanilide Cation (AA⁺) in a Nonpolar Solvent:

IR Spectra of AA^+ -L_n clusters (L=He, Ar, N₂; n≤10)

by

Matthias Schmies,^[a] Alexander Patzer,^[a] Markus Schütz,^[a] Mitsuhiko Miyazaki,^[b] Masaaki Fujii,^[b] and Otto Dopfer^{*[a]}

^[a] Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin Germany

* Fax: (+49) 30-31423018, E-mail: dopfer@physik.tu-berlin.de

^[b] Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Figure S1. Highest occupied molecular orbitals (HOMO, HOMO-1, LUMO) of t-AA⁺ and c-AA⁺ calculated at the M06-2X/aug-cc-pVTZ level.

Figure S2. NBO charge distribution (in 10^{-3} e) of t-AA⁺ and c-AA⁺ in the cation ground electronic state (D₀) evaluated at the M06-2X/aug-cc-pVTZ level.

Figure S3. IRPD spectra of AA^+ - Ar_n with n <7 in the C-H and N-H stretch range recorded in the dominant fragment channel, indicted as n-m. For comparison, the IRPD spectrum of AA^+ -He is plotted as well. The positions of the transitions for n=1 are listed in Table 2 along with their vibrational and isomer assignments. The origin of the transition X is unclear. It may arise from isobaric contaminations, i.e. ions with the same mass but different composition.

Figure S4. IRPD spectra of AA^+ - $(N_2)_n$ with n≤10 in the C-H and N-H stretch range recorded in the dominant fragment channel, indicted as n-m. For comparison, the IRPD spectrum of AA^+ -He is plotted as well. The positions of the transitions for n=1 are listed in Table 2 along with their vibrational and isomer assignments. The origin of the transitions labelled with X-Z is unclear. They may arise from isobaric contaminations, i.e. ions with the same mass but different composition.

Figure S5. Experimental IR spectra of AA⁺-Ar and t-AA (taken from Miyazaki et al, PCCP 11, 2009, 6098) in the C-H and N-H stretch range are compared to linear IR absorption spectra of t-AA⁺ and t-AA calculated at the M06-2X/aug-cc-pVTZ level.

Figure S6. IRPD spectra of AA^+ - Ar_n with n≤4 in the fingerprint range recorded in the dominant fragment channels, indicted as n-m. The positions of the transitions for n=1 are listed in Table 2 along with their vibrational and isomer assignments. For AA^+ -Ar, spectra with high and low detector sensitivity are shown. The one with high detector sensitivity shows weak bands but the strong transitions near 1530 cm⁻¹ are saturated.

Figure S7. IRPD spectra of AA^+ - $(N_2)_n$ with n≤3 in the fingerprint range recorded in the dominant fragment channels, indicted as n-m. The positions of the transitions for n=1 are listed in Table 2 along with their vibrational and isomer assignments.

Figure S8. Experimental IR spectra of AA⁺-Ar and t-AA (taken from Miyazaki et al, PCCP 11, 2009, 6098) in the fingerprint range are compared to linear IR absorption spectra of t-AA⁺ and t-AA calculated at the M06-2X/aug-cc-pVTZ level.

Figure S9. Expanded view of the IRPD spectra of AA^+-L_n with L=Ar (n≤4) and N₂ (n≤3) recorded in the amide II range are compared to the linear IR absorption spectra calculated for t-AA⁺, t-AA⁺-Ar(H), and t-AA⁺-N₂(H) at the M06-2X/aug-cc-pVTZ level. The positions of the transitions for n=1 are listed in Table 2 along with their vibrational and isomer assignments.

Figure S10. IRPD spectra of AA^+ - Ar_n with n=1 and 2 when the cluster ions are generated either by one-color two-photon (1+1) REMPI of the neutral AA- Ar_n dimers (blue) or by EI (red). The REMPI-IR spectra are obtained by isomer-selective resonant ionization of t-AA- $Ar(n\pi)$ via their S₁ origins with substantial ionization excess energy and subsequent IRPD at a delay of 50 ns. The REMPI-IR spectra (taken from Sakota et al, J. Phys. Chem. A, 115, 2011, 626), display a systematic redshift of ~7 cm⁻¹ compared to the EI-IR spectra which probably arise from calibration issues in the REMPI-IR study.

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

Figure S7

Figure S8

Figure S9

Figure S10