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Figure S1. Highest occupied molecular orbitals (HOMO, HOMO-1, LUMO) of t-AA+ and c-AA+ calculated at 

the M06-2X/aug-cc-pVTZ level. 

 

Figure S2. NBO charge distribution (in 10-3 e) of t-AA+ and c-AA+ in the cation ground electronic state (D0) 

evaluated at the M06-2X/aug-cc-pVTZ level. 

 

Figure S3. IRPD spectra of AA+-Arn with n≤7 in the C-H and N-H stretch range recorded in the dominant 

fragment channel, indicted as n-m. For comparison, the IRPD spectrum of AA+-He is plotted as well. The 

positions of the transitions for n=1 are listed in Table 2 along with their vibrational and isomer assignments. 

The origin of the transition X is unclear. It may arise from isobaric contaminations, i.e. ions with the same 

mass but different composition. 

 

Figure S4. IRPD spectra of AA+-(N2)n with n≤10 in the C-H and N-H stretch range recorded in the dominant 

fragment channel, indicted as n-m. For comparison, the IRPD spectrum of AA+-He is plotted as well. The 

positions of the transitions for n=1 are listed in Table 2 along with their vibrational and isomer assignments. 

The origin of the transitions labelled with X-Z is unclear. They may arise from isobaric contaminations, i.e. 

ions with the same mass but different composition. 

 

Figure S5. Experimental IR spectra of AA+-Ar and t-AA (taken from Miyazaki et al, PCCP 11, 2009, 6098) in 

the C-H and N-H stretch range are compared to linear IR absorption spectra of t-AA+ and t-AA calculated at 

the M06-2X/aug-cc-pVTZ level. 

 

Figure S6. IRPD spectra of AA+-Arn with n≤4 in the fingerprint range recorded in the dominant fragment 

channels, indicted as n-m. The positions of the transitions for n=1 are listed in Table 2 along with their 

vibrational and isomer assignments. For AA+-Ar, spectra with high and low detector sensitivity are shown. 

The one with high detector sensitivity shows weak bands but the strong transitions near 1530 cm-1 are 

saturated.  
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Figure S7. IRPD spectra of AA+-(N2)n with n≤3 in the fingerprint range recorded in the dominant fragment 

channels, indicted as n-m. The positions of the transitions for n=1 are listed in Table 2 along with their 

vibrational and isomer assignments. 

 

Figure S8. Experimental IR spectra of AA+-Ar and t-AA (taken from Miyazaki et al, PCCP 11, 2009, 6098) in 

the fingerprint range are compared to linear IR absorption spectra of t-AA+ and t-AA calculated at the 

M06-2X/aug-cc-pVTZ level. 

 

Figure S9. Expanded view of the IRPD spectra of AA+-Ln with L=Ar (n≤4) and N2 (n≤3) recorded in the amide 

II range are compared to the linear IR absorption spectra calculated for t-AA+, t-AA+-Ar(H), and t-AA+-N2(H) 

at the M06-2X/aug-cc-pVTZ level. The positions of the transitions for n=1 are listed in Table 2 along with 

their vibrational and isomer assignments. 

 
Figure S10. IRPD spectra of AA+-Arn with n=1 and 2 when the cluster ions are generated either by one-color 

two-photon (1+1) REMPI of the neutral AA-Arn dimers (blue) or by EI (red). The REMPI-IR spectra are 

obtained by isomer-selective resonant ionization of t-AA-Ar(nπ) via their S1 origins with substantial ionization 

excess energy and subsequent IRPD at a delay of 50 ns. The REMPI-IR spectra (taken from Sakota et al, J. 

Phys. Chem. A, 115, 2011, 626), display a systematic redshift of ~7 cm-1 compared to the EI-IR spectra 

which probably arise from calibration issues in the REMPI-IR study. 
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