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Figure S1. Highest occupied molecular orbitals (HOMO, HOMO-1, LUMO) of t-AA" and c-AA" calculated at
the M06-2X/aug-cc-pVTZ level.

Figure S2. NBO charge distribution (in 10 e) of t-AA" and c-AA" in the cation ground electronic state (Do)
evaluated at the M06-2X/aug-cc-pVTZ level.

Figure S3. IRPD spectra of AA™-Ar, with n<7 in the C-H and N-H stretch range recorded in the dominant
fragment channel, indicted as n-m. For comparison, the IRPD spectrum of AA’-He is plotted as well. The
positions of the transitions for n=1 are listed in Table 2 along with their vibrational and isomer assignments.
The origin of the transition X is unclear. It may arise from isobaric contaminations, i.e. ions with the same

mass but different composition.

Figure S4. IRPD spectra of AA"-(N,), with n<10 in the C-H and N-H stretch range recorded in the dominant
fragment channel, indicted as n-m. For comparison, the IRPD spectrum of AA’-He is plotted as well. The
positions of the transitions for n=1 are listed in Table 2 along with their vibrational and isomer assignments.
The origin of the transitions labelled with X-Z is unclear. They may arise from isobaric contaminations, i.e.

ions with the same mass but different composition.

Figure S5. Experimental IR spectra of AA™-Ar and t-AA (taken from Miyazaki et al, PCCP 11, 2009, 6098) in
the C-H and N-H stretch range are compared to linear IR absorption spectra of t-AA" and t-AA calculated at
the M06-2X/aug-cc-pVTZ level.

Figure S6. IRPD spectra of AA™-Ar, with n<4 in the fingerprint range recorded in the dominant fragment
channels, indicted as n-m. The positions of the transitions for n=1 are listed in Table 2 along with their
vibrational and isomer assignments. For AA™-Ar, spectra with high and low detector sensitivity are shown.
The one with high detector sensitivity shows weak bands but the strong transitions near 1530 cm™ are

saturated.



Figure S7. IRPD spectra of AA"-(N,), with n<3 in the fingerprint range recorded in the dominant fragment
channels, indicted as n-m. The positions of the transitions for n=1 are listed in Table 2 along with their

vibrational and isomer assignments.

Figure S8. Experimental IR spectra of AA™-Ar and t-AA (taken from Miyazaki et al, PCCP 11, 2009, 6098) in
the fingerprint range are compared to linear IR absorption spectra of t-AA” and t-AA calculated at the
MQ6-2X/aug-cc-pVTZ level.

Figure S9. Expanded view of the IRPD spectra of AA"-L, with L=Ar (n<4) and N, (n<3) recorded in the amide
Il range are compared to the linear IR absorption spectra calculated for t-AA", t-AA™-Ar(H), and t-AA"-N,(H)
at the M06-2X/aug-cc-pVTZ level. The positions of the transitions for n=1 are listed in Table 2 along with

their vibrational and isomer assignments.

Figure S10. IRPD spectra of AA™-Ar, with n=1 and 2 when the cluster ions are generated either by one-color
two-photon (1+1) REMPI of the neutral AA-Ar, dimers (blue) or by EIl (red). The REMPI-IR spectra are
obtained by isomer-selective resonant ionization of t-AA-Ar(nxt) via their Sy origins with substantial ionization
excess energy and subsequent IRPD at a delay of 50 ns. The REMPI-IR spectra (taken from Sakota et al, J.
Phys. Chem. A, 115, 2011, 626), display a systematic redshift of ~7 cm” compared to the EI-IR spectra
which probably arise from calibration issues in the REMPI-IR study.
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