SUPPORTING INFORMATION for:

Beyond the molecular orbital conception of electronically excited states through the quantum theory of atoms in molecules

David Ferro-Costas¹, Ángel Martín Pendás², Leticia González³, and Ricardo A. Mosquera^{*1}

¹Departamento de Química Física, Universidade de Vigo, Facultade de Química, Lagoas-Marcosende s/n, 36310 Vigo, Spain ²Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006-Oviedo, Spain ³Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria

Keywords: Formaldehyde, electronic excited states, QTAIM, IQA scheme, n π^* states, ELF, electronic structure theory.

^{*}Email: mosquera@uvigo.es; Corresponding author

Table S1: Change in the diatomic terms (in kJ mol⁻¹) arising from the IQA scheme for the vertical electronic excitation process (Figure 4a). In the core attraction matrix, $\Delta V_{ne}(\alpha, \Omega)$, columns represent the nuclei (α) and rows the basins (Ω). The data correspond to the CASSCF(4,3)/ccpVTZ level of calculation.

	$\Delta V_{coul}(\Omega, \Omega')$				$\Delta V_{xc}(\Omega$	(Ω')		
	С	Ο	H1	H2	С	Ο	H1	H2
С	3449.7				-496.1			
0	1818.0	-3450.5			132.5	175.0		
H1	-75.9	-737.2	-169.5		1.7	-3.3	91.0	
H2	-75.9	-737.2	-117.1	-169.5	1.7	-3.3	5.1	91.0
		$\Delta V_{ne}(a)$	$(lpha,\Omega)$			$\Delta V_{nn}(\alpha$	(α, α')	
	\mathbf{C}	Ο	H1	H2	С	Ο	H1	H2
С	-4252.7	-3230.4	-502.2	-502.2				
0	2411.3	2733.9	251.3	251.3	0.0			
H1	613.1	445.5	255.7	64.0	0.0	0.0		
H2	613.1	445.5	64.0	255.7	0.0	0.0	0.0	

Table S2: Change in the diatomic terms (in kJ mol⁻¹) arising from the IQA scheme for the C–O elongation process (Figure 4b). In the core attraction matrix, $\Delta V_{ne}(\alpha, \Omega)$, columns represent the nuclei (α) and rows the basins (Ω). The data correspond to the CASSCF(4,3)/cc-pVTZ level of calculation.

		ΔV_{coul}	$\Omega, \Omega')$			$\Delta V_{xc}(\Omega)$	$,\Omega')$	
	С	Ο	H1	H2	С	0	H1	H2
С	1080.1				 -158.6			
Ο	-3697.9	-2853.3			133.4	219.9		
H1	148.6	-251.1	9.3		-28.3	14.5	-6.4	
H2	148.6	-251.1	-17.5	9.3	-28.3	14.5	0.4	-6.4
		$\Delta V_{ne}(a)$	$(lpha,\Omega)$			$\Delta V_{nn}(\alpha$	$, \alpha')$	
	С	Ο	H1	H2	С	Ο	H1	H2
C1	-1298.3	2725.2	-197.1	-197.1				
O2	7571.4	3274.5	288.0	288.0	-6077.7			
H3	-80.4	157.6	-36.5	19.3	125.3	-180.8		
Η4	-80.4	157.6	19.3	-36.5	125.3	-180.8	-21.5	

Table S3: Change in the diatomic terms (in kJ mol⁻¹) arising from the IQA scheme for the C pyramidalization process (Figure 4c). In the core attraction matrix, $\Delta V_{ne}(\alpha, \Omega)$, columns represent the nuclei (α) and rows the basins (Ω). The data correspond to the CASSCF(4,3)/cc-pVTZ level of calculation.

		$\Delta V_{coul}($	$\Omega, \Omega')$			$\Delta V_{xc}($	$\Omega, \Omega')$	
	С	0	H1	H2	С	0	H1	H2
С	-613.1				41.1			
0	-388.7	158.4			8.8	-12.9		
H1	99.4	296.8	61.5		8.7	-5.2	-30.8	
H2	99.4	296.8	62.7	61.5	8.7	-5.2	-1.2	-30.8
		$\Delta V_{ne}($	(α, Ω)			ΔV_{nn}	(lpha, lpha')	
	С	Ο	H1	H2	С	Ο	H1	H2
С	716.9	404.9	153.9	153.9				
0	-205.0	-175.9	-99.5	-99.5	117.8			
H1	-213.1	-264.4	-82.3	-44.1	-54.9	83.9		
H2	-213.1	-264.4	-44.1	-82.3	-54.9	83.9	20.1	

Table S4: Changes in the intra-atomic net energies and the inter-atomic interaction energies $(kJ \text{ mol}^{-1})$ for the processes (a to c) considered in Figure 4. However, instead of the singlet S_1 state, the triplet T_1 is considered (*planar* T_1 and *min* T_1 in place of *planar* S_1 and *min* S_1). The data correspond to the CASSCF(4,3)/cc-pVTZ level of calculation.

	(a)	(b)	(c)
$\Delta E_{net}(C)$	-629.3	-264.1	81.9
$\Delta E_{net}(O)$	-201.9	-374.8	37.4
$\Delta E_{net}(H)$	40.2	-11.3	-11.1
$\Delta V_{int}(C,O)$	1110.5	621.7	-116.9
$\Delta V_{int}(C,H)$	44.6	-36.7	-1.0
$\Delta V_{int}(O, H)$	-50.7	31.2	10.6
$\Delta V_{int}(H,H')$	18.0	-1.5	-7.2

Table S5: Difference in the intra-atomic net energies and the inter-atomic interaction energies (kJ mol⁻¹) between T_1 and S_1 (both in *planarS*₁ geometry). The data correspond to the CASSCF(4,3)/cc-pVTZ level of calculation.

	$T_1 - S_1$
$\Delta E_{net}(C)$	-18.1
$\Delta E_{net}(O)$	-2.8
$\Delta E_{net}(H1)$	1.2
$\Delta V_{int}(C,O)$	-5.0
$\Delta V_{int}(C,H1)$	1.7
$\Delta V_{int}(O, H1)$	-2.3
$\Delta V_{int}(H1, H2)$	0.9

Table S6: Change in the atomic kinetic energies $(kJ \text{ mol}^{-1})$ for the processes (a to c) considered in Figure 4. The data correspond to the CASSCF(4,3)/cc-pVTZ level of calculation.

	(a)	(b)	(c)
$\Delta T(C)$	693.1	86.6	-87.1
$\Delta T(O)$	338.5	-1039.5	40.9
$\Delta T(H)$	-139.5	23.9	41.5