Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2014

Supplementary Material

DPT tautomerisation of the G·A_{syn} and A*·G*_{syn} DNA mismatches: A QM/QTAIM combined atomistic investigation

Ol'ha O. Brovarets' and Dmytro M. Hovorun $^{\boxtimes}$

^aDepartment of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine ^bDepartment of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave., 03022 Kyiv, Ukraine [⊠]Corresponding author. Email: dhovorun@imbg.org.ua.

Fig. S1 Profiles of: (a) the electronic energy E of the base mispair and (b) the first derivative of the electronic energy E with respect to the IRC - dE/dIRC - along the IRC of the $A^* \cdot G^*_{syn} \leftrightarrow A \cdot G^*_{syn}$ tautomerisation *via* the DPT obtained at the B3LYP/6-311++G(d,p) level of theory *in vacuo*. The position of the TS_{A*·G*syn↔A·G*syn} corresponds to IRC=0.00 Bohr.

Fig. S2 Profile of the dipole moment μ of the base mispair along the IRC of the A*·G*_{syn} \leftrightarrow A·G*_{syn} tautomerisation *via* the DPT obtained at the B3LYP/6-311++G(d,p) level of theory *in vacuo*.

Fig. S3 Profiles of: (a) the electron density ρ ; (b) the Laplacian of the electron density $\Delta\rho$; (c) the ellipticity ε and (d) the energy of the H-bond E_{HB} , estimated by the EML formula [1,2], at the (3,-1) BCPs of the covalent and hydrogen bonds along the IRC of the A*·G*_{syn} \leftrightarrow A·G*_{syn} tautomerisation *via* the DPT obtained at the B3LYP/6-311++G(d,p) level of theory *in vacuo*.

Fig. S4 Profiles of: (a) the distance $d_{A\cdots B}$ between the electronegative A and B atoms; (b) the distance $d_{AH/HB}$ between the hydrogen and electronegative A or B atoms and (c) the angle $\angle AH\cdots B$ of the AH $\cdots B$ H-bonds along the IRC of the $A^* \cdot G^*_{syn} \leftrightarrow A \cdot G^*_{syn}$ tautomerisation *via* the DPT obtained at the B3LYP/6-311++G(d,p) level of theory *in vacuo*.

Fig. S5 Profiles of the NBO charges of the hydrogen atoms involved in the O6H_I···N6/N6H_I···O6 and N1H_{II}···N7/N7H_{II}···N1 H-bonds along the IRC of the $A^* \cdot G^*_{syn} \leftrightarrow A \cdot G^*_{syn}$ tautomerisation *via* the DPT obtained at the B3LYP/6-311++G(d,p) level of theory *in vacuo*.

Fig. S6 Profiles of: (a) the distance R(H-H) between the glycosidic hydrogens and (b) the α_1 (\angle N9H(A)H(G_{syn})) and α_2 (\angle N9H(G_{syn})H(A)) glycosidic angles along the IRC of the A*·G*_{syn} \leftrightarrow A·G*_{syn} tautomerisation *via* the DPT obtained at the B3LYP/6-311++G(d,p) level of theory *in vacuo*.

References.

1. Espinosa E., Molins E., Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities, *Chem. Phys. Lett.*, 1998, **285**, 170–173.

2. Mata I., Alkorta I., Espinosa E., Molins E. Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields, *Chem. Phys. Lett.*, 2011, **507**, 185–189.