# **Supporting Information**

## Atomic Partitioning of M-H<sub>2</sub> Bonds in [NiFe] Hydrogenase-

## A Test case of Concurrent Binding

Swaminathan Angeline Vedha, Rajadurai Vijay Solomon, & Ponnambalam Venuvanalingam

Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli – 620024, Tamil Nadu, INDIA Tel: +91 431 2407053, Fax: +91 431 2407045

E-mail: <u>venuvanalingam@yahoo.com</u>

SIF1. Geometries of the twelve cases of the active site of the [NiFe] Hase in the as isolated Ni-SI state.Figure shows Ni in blue, Fe in purple,O in red, S in yellow, Nin deep blue and C & H in ash colors.



#### **Introduction to QTAIM**

The Quantum theory of atoms in molecules (QTAIM) is mainly based on electron density  $\rho(\tau)$  and it provides useful insights on the nature of bonding and non-bonding interactions in a chemical system<sup>[88, 89]</sup>. According to Bader's (QTAIM theory, the presence of (3,-1) bond critical point (*bcp*) between any two atoms is accepted as a criterion for the existence of interactions between them<sup>[90, 91]</sup>. Further the topological properties at *bcp* namely, electron density  $\rho(\tau)$ , its second derivative  $\nabla^2 \rho(\tau)$ , Kinetic energy density G(r) and the potential energy density V(r) and their signs describes the type and nature of a chemical bond. The molecular graph of the studied systems is given in figure below, where the big spheres correspond to attractors attributed to positions of atoms and critical points such as (3, -1) bond critical point (red) and (3, +1) ring critical point (yellow) & (3,+3) cage critical point (green) indicated by small spheres. The bond ellipticity ( $\varepsilon$ ), which is defined as ( $\lambda_1/\lambda_2$ ) – 1, where  $\lambda$  is the eigen value at the *bcp*, also provides quantitative evidence for the  $\pi$  character of the bond under investigation. When  $\varepsilon \rightarrow 0$ , the bond belongs to a typical  $\sigma$  bond, and larger is the  $\varepsilon$  value, stronger will be the  $\pi$ character.



Table 1 Topological properties at the atomic basin of Ni. Computed at the B3LYP/6-311++G with (2d, 2p) polarizations on all atoms.

|      | Volume @0.01a.u | Volume @ 0.001a.u | $\rho(\mathbf{r})$ (a.u) | Energy(a.u)  | Charge (q in a.u) |
|------|-----------------|-------------------|--------------------------|--------------|-------------------|
| 1LS  | 1.0552e+002     | 9.4985e+001       | 2.7392e+001              | -1.5090e+003 | 6.0796e-001       |
| 1LSp | 1.0778e+002     | 9.8667e+001       | 2.7459e+001              | -1.5091e+003 | 5.4026e-001       |
| 1HS  | 1.0596e+002     | 9.5962e+001       | 2.7186e+001              | -1.5088e+003 | 8.1340e-001       |
| 1HSp | 1.1181e+002     | 1.0136e+002       | 2.7241e+001              | -1.5091e+003 | 7.5816e-001       |
| 2LS  | 1.0518e+002     | 9.8198e+001       | 2.7426e+001              | -1.5091e+003 | 5.7344e-001       |
| 2LSp | 1.0772e+002     | 1.0057e+002       | 2.7263e+001              | -1.5091e+003 | 7.3631e-001       |
| 2HS  | 1.0696e+002     | 9.9910e+001       | 2.7229e+001              | -1.5091e+003 | 7.7043e-001       |
| 2HSp | 1.0531e+002     | 9.8477e+001       | 2.7228e+001              | -1.5091e+003 | 7.7115e-001       |
| 3LS  | 8.9656e+001     | 8.7047e+001       | 2.7438e+001              | -1.5090e+003 | 5.6176e-001       |
| 3LSp | 8.5336e+001     | 8.4547e+001       | 2.7463e+001              | -1.5091e+003 | 5.3627e-001       |
| 4LS  | 8.6511e+001     | 8.5533e+001       | 2.7427e+001              | -1.5090e+003 | 5.7239e-001       |
| 4LSp | 2.7427e+001     | 2.7425e+001       | 2.7427e+001              | -1.5090e+003 | 5.7239e-001       |

Table 2 Topological properties at the atomic basin of FeComputed at the B3LYP/6-311++G with (2d, 2p) polarizations on all atoms.

.

|      | Volume@0.001 | Volume@0.002 | Energy(a.u) | Charge (q | <i>ρ</i> (r ) |
|------|--------------|--------------|-------------|-----------|---------------|
|      | (a.u)        | (a.u)        |             | in a.u)   | (a.u)         |
| 1LS  | 73.2358      | 70.21        | -1263.96    | 0.93      | 25.0658       |
| 1LSp | 73.2148      | 71.20        | -1264.17    | 0.90      | 25.0946       |
| 1HS  | 75.0600      | 71.75        | -1263.95    | 0.91      | 25.0908       |
| 1HSp | 75.2420      | 72.13        | -1264.11    | 0.92      | 25.0792       |
| 2LS  | 64.6405      | 64.1825      | -1264.129   | 0.909     | 25.0907       |
| 2LSp | 63.9115      | 63.52        | -1264.09    | 0.895     | 25.1044       |
| 2HS  | 64.3881      | 63.97        | -1264.08    | 0.901     | 25.0985       |
| 2HSp | 64.3881      | 63.97        | -1264.08    | 0.90      | 25.0985       |
| 3LS  | 70.3595      | 69.48        | -1264.14    | 0.89      | 25.1063       |
| 3LSp | 70.4586      | 69.32        | -1264.16    | 0.90      | 25.1040       |
| 4LS  | 64.2546      | 63.78        | -1264.08    | 0.91      | 25.0929       |
| 4LSp | 64.2985      | 63.83        | -1264.16    | 0.90      | 25.0970       |

|      | Donor NBO(i)                                | Accentor NBO(i)                             | ΔΕ    |
|------|---------------------------------------------|---------------------------------------------|-------|
| 11.5 | $\sigma S_2 - Ni_{20}$                      | $\sigma^*S_{12}$ -Niao                      | 6.41  |
| 1120 | $\sigma C_4$ -H <sub>27</sub>               | $\sigma^*C_5 - S_6$                         | 4 79  |
|      | $\sigma C7-H_{23}$                          | $\sigma^*C_8 - S_9$                         | 4.69  |
|      | $\sigma S_9 - Ni_{20}$                      | $\sigma^*S_6-Ni_{20}$                       | 5.35  |
|      | σ C <sub>10</sub> -H <sub>30</sub>          | $\sigma^*C_{11} - S_{12}$                   | 4.94  |
|      | $\sigma S_{12}$ -Ni <sub>20</sub>           | n*Fe <sub>13</sub>                          | 17.58 |
|      | $\sigma S_{12} - Ni_{20}$                   | $\sigma^*S_3$ -Ni <sub>20</sub>             | 5.75  |
|      | $\sigma Fe_{13} - C_{14}$                   | $\sigma^* Fe_{13} - C_{14}$                 | 10.05 |
|      | $\sigma Fe_{13} - C_{14}$                   | $\sigma^* Fe_{13} - C_{18}$                 | 10.48 |
|      | $\sigma Fe_{13} - C_{16}$                   | $\sigma^*S_{12}$ -Fe <sub>13</sub>          | 7.31  |
|      | $\sigma Fe_{13} - C_{18}$                   | $\sigma^* Fe_{13} - C_{18}$                 | 6.77  |
|      | n S <sub>3</sub>                            | σ*S <sub>3</sub> -Ni <sub>20</sub>          | 4.7   |
|      | n Fe <sub>13</sub>                          | σ*C <sub>18</sub> -O <sub>19</sub>          | 21.63 |
|      | n Fe <sub>13</sub>                          | $\pi^*C_{18}$ -O <sub>19</sub>              | 24.38 |
|      | n Ni <sub>20</sub>                          | n*Fe <sub>13</sub>                          | 5.10  |
|      | σ S <sub>12</sub> -Ni <sub>20</sub>         | n*Fe <sub>13</sub>                          | 17.58 |
|      | σ Fe <sub>13</sub> -C <sub>16</sub>         | $\sigma * Fe_{13} - C_{16}$                 | 10.37 |
|      | σ Fe <sub>13</sub> -C <sub>16</sub>         | $\sigma * Fe_{13} - C_{18}$                 | 11.18 |
|      | $\sigma$ Fe <sub>13</sub> -C <sub>18</sub>  | $\sigma * Fe_{13} - C_{14}$                 | 10.21 |
|      | σ Fe <sub>13</sub> -C <sub>18</sub>         | $\sigma * Fe_{13} - C_{16}$                 | 10.68 |
| 2LS  | σ S <sub>6</sub> -Ni <sub>20</sub>          | σ*S <sub>9</sub> -Ni <sub>20</sub>          | 6.88  |
|      | $\sigma$ S <sub>12</sub> -Fe <sub>13</sub>  | n*Ni <sub>20</sub>                          | 21.07 |
|      | $\sigma Fe_{13}$ - C <sub>14</sub>          | $\sigma * Fe_{13} - C_{14}$                 | 11.68 |
|      | $\sigma$ Fe <sub>13</sub> - C <sub>14</sub> | $\sigma^* Fe_{13} - C_{18}$                 | 10.59 |
|      | $\sigma Fe_{13}$ - C <sub>18</sub>          | $\sigma * Fe_{13} - C_{14}$                 | 10.71 |
|      | $\sigma$ Fe <sub>13</sub> - C <sub>18</sub> | $\sigma$ *Fe <sub>13</sub> -C <sub>16</sub> | 10.28 |
|      | n Fe <sub>13</sub>                          | σ*C <sub>18</sub> -O <sub>19</sub>          | 19.20 |
|      | n Fe <sub>13</sub>                          | $\sigma^*C_{18}-O_{19}$                     | 16.61 |
|      | $\sigma Fe_{13} - C_{14}$                   | σ*H <sub>41</sub> -H <sub>42</sub>          | 4.88  |
|      | n S <sub>12</sub>                           | n*Ni 20                                     | 78.60 |
|      | $\sigma$ S <sub>12</sub> -Fe <sub>13</sub>  | n*Ni <sub>20</sub>                          | 21.07 |
|      | $n Fe_{13}$                                 | σ*C <sub>18</sub> -O <sub>19</sub>          | 19.20 |
|      | n Fe <sub>13</sub>                          | $\pi^*C_{18}-O_{19}$                        | 16.61 |
|      | $\sigma$ Fe-C <sub>14</sub>                 | $\sigma^* Fe_{13} - C_{14}$                 | 11.68 |
| 21.0 | n Fe                                        | $\sigma^* H_{41} - H_{42}$                  | 2.39  |
| 31.5 | $\sigma S_3 - N I_{20}$                     | $\sigma^* S_{12} - N I_{20}$                | 5.20  |
|      | $\sigma S_6-N_{120}$                        | n*Fe <sub>13</sub>                          | 9.35  |
|      | $\sigma S_{12} - Ni_{20}$                   | $n*Fe_{13}$                                 | 20.93 |
|      | $\sigma$ Fe <sub>13</sub> -C <sub>14</sub>  | $\sigma^* Fe_{13} - C_{14}$                 | 10.00 |
|      | $\sigma$ Fe <sub>13</sub> -C <sub>14</sub>  | $\sigma^* Fe_{13} - C_{16}$                 | 5.15  |
|      | $\sigma$ Fe <sub>13</sub> -C <sub>14</sub>  | $\sigma^*Fe_{13}-C_{18}$                    | 9.91  |
|      | $\sigma$ Fe <sub>13</sub> -C <sub>16</sub>  | $\sigma^*Fe_{13}$ -C <sub>16</sub>          | 10.46 |
|      | $\sigma$ Fe <sub>13</sub> -C <sub>18</sub>  | $\sigma^* Fe_{13} - C_{16}$                 | 9.94  |
|      | $\sigma$ Fe <sub>13</sub> -C <sub>18</sub>  | $\sigma^{*}Fe_{13} - C_{14}$                | 9.64  |
|      | $\circ$ re <sub>13</sub> - $C_{18}$         | $\sigma^* \Gamma e_{13} - C_{18}$           | 0.24  |
|      | n Fere                                      | $\pi^*C_{18} - O_{19}$                      | 22.20 |
|      | n Ni <sub>20</sub>                          | $n^* \text{Fe}_{12}$                        | 7 17  |
|      | n Ni20                                      | $\sigma^* S_{12}$ -Ni <sub>20</sub>         | 9.64  |

Table 3. Results of the NBO analysis showing donor and acceptor orbitals with their corresponding interaction energies. In kcal/mol computed at the B3LYP/6-311++G (d, p) level

|     | n Ni <sub>20</sub>                         | $\sigma^{*}H_{41}-H_{42}$           | 10.46  |
|-----|--------------------------------------------|-------------------------------------|--------|
|     | σ H <sub>41</sub> -H <sub>42</sub>         | n*Ni <sub>20</sub>                  | 93.90  |
|     | n Ni <sub>20</sub>                         | σ*H <sub>41</sub> -H <sub>42</sub>  | 0.06   |
|     | n Ni <sub>20</sub>                         | σ*H <sub>41</sub> -H <sub>42</sub>  | 10.46  |
|     | n Ni <sub>20</sub>                         | σ*H <sub>41</sub> -H <sub>42</sub>  | 0.14   |
| 4LS | $\sigma$ Fe <sub>13</sub> -C <sub>14</sub> | $\sigma * Fe_{13} - C_{18}$         | 10.30  |
|     | $\sigma$ Fe <sub>13</sub> -C <sub>16</sub> | σ*Fe13-C <sub>16</sub>              | 11.89  |
|     | $\sigma$ Fe <sub>13</sub> -C <sub>16</sub> | σ*Fe13-C <sub>18</sub>              | 10.26  |
|     | $\sigma$ Fe <sub>13</sub> -C <sub>16</sub> | $\pi^*C_{18}-O_{19}$                | 5.11   |
|     | $\sigma$ Fe <sub>13</sub> -C <sub>18</sub> | $\sigma * Fe_{13} - C_{14}$         | 10.67  |
|     | $\sigma$ Fe <sub>13</sub> -C <sub>18</sub> | $\sigma * Fe_{13} - C_{16}$         | 10.67  |
|     | n Fe <sub>13</sub>                         | $\pi * C_{14} - N_{15}$             | 5.46   |
|     | n Fe <sub>13</sub>                         | $\sigma^*C_{18}-O_{19}$             | 15.27  |
|     | n Fe <sub>13</sub>                         | $\pi^*C_{18}-O_{19}$                | 13.66  |
|     | $\sigma$ Fe <sub>13</sub> -C <sub>16</sub> | σ*H <sub>43</sub> -H <sub>44</sub>  | 5.41   |
|     | $\sigma$ H <sub>41</sub> -H <sub>42</sub>  | n*Ni <sub>20</sub>                  | 73.51  |
|     | $\sigma$ H <sub>41</sub> -H <sub>42</sub>  | σ*S <sub>3</sub> -Ni <sub>20</sub>  | 5.15   |
|     | σ H <sub>43</sub> -H <sub>44</sub>         | n*Fe <sub>13</sub>                  | 132.19 |
|     | n Ni <sub>20</sub>                         | σ*H <sub>43</sub> -H <sub>44</sub>  | 0.68   |
|     | n Ni <sub>20</sub>                         | σ*H <sub>41</sub> -H <sub>42</sub>  | 10.12  |
|     | n Fe <sub>13</sub>                         | σ*H <sub>43</sub> -H <sub>44</sub>  | 1.69   |
|     | n Fe <sub>13</sub>                         | σ*H <sub>43</sub> -H <sub>44</sub>  | 0.83   |
|     | n Fe <sub>13</sub>                         | σ*H <sub>43</sub> -H <sub>44</sub>  | 0.08   |
|     | σ C <sub>16</sub> -N <sub>17</sub>         | σ*H <sub>43</sub> -H <sub>44</sub>  | 0.20   |
|     | $\pi C_{16}-N_{17}$                        | σ* H <sub>43</sub> -H <sub>44</sub> | 0.29   |
|     | $\pi C_{16} - N_{17}$                      | σ* H <sub>43</sub> -H <sub>44</sub> | 0.12   |
|     | n Ni <sub>20</sub>                         | σ*H43-H44                           | 0.19   |

| ILS        | ENERGY       | CHARGE       | ρ(r)        | $-\nabla 2\rho(\mathbf{r})$ | VOLUME @0.01 | VOLUME @0.001 |
|------------|--------------|--------------|-------------|-----------------------------|--------------|---------------|
| C16        | -3.7536e+001 | 6.1800e-001  | 5.3819e+0   | -9.1037e-003                | 8.8245e+001  | 7.7508e+001   |
| N17        | -5.5181e+001 | -1.2651e+000 | 8.2651e+0   | -1.0024e-003                | 1.7902e+002  | 1.3901e+002   |
|            | -92.7187     | -0.6471      |             |                             | 267.2662     |               |
| C14        | -3.7536e+001 | 6.1265e-001  | 5.3873e+0   | -9.7590e-003                | 9.0247e+001  | 7.8414e+001   |
| N15        | -5.5181e+001 | -1.2679e+0   | 8.2679e+0   | -1.1514e-003                | 1.8024e+002  | 1.3898e+002   |
|            | -92.7178     | -0.6552      |             |                             | 270.50       |               |
| C18        | -3.7380e+001 | 9.6097e-001  | 5.0390e+0   | -9.9651e-003                | 7.1879e+001  | 6.3968e+001   |
| 019        | -7.5933e+001 | -1.1647e+00  | 9.1647e+0   | -3.2310e-003                | 1.3376e+002  | 1.0804e+002   |
|            | -113.3143    | -0.2037      |             |                             | 205.64       |               |
| \$12       | -3.9839e+002 | -3.4582e-001 | 1.6345e+1   | 7.3714e-003                 | 1.7613e+002  | 1.5817e+002   |
| C11        | -3.7894e+001 | -4.2542e-003 | 6.0042e+00  | -8.3156e-003                | 6.1173e+001  | 5.8117e+001   |
| C10        | -3.7845e+001 | 1.2319e-001  | 5.8768e+00  | -8.3350e-003                | 6.7683e+001  | 6.0736e+001   |
| H30        | -6.3810e-001 | -4.8792e-002 | 1.0487e+00  | 5.8045e-004                 | 5.3902e+001  | 4.0679e+001   |
| H31        | -6.3569e-001 | -4.4866e-002 | 1.0448e+00  | 2.8503e-004                 | 5.4154e+001  | 4.0340e+001   |
| H32        | -6.2821e-001 | -1.8834e-002 | 1.0188e+00  | 4.4902e-004                 | 5.4592e+001  | 4.0488e+001   |
| H39        | -6.2336e-001 | 1.4327e-002  | 9.8567e-001 | 5.1011e-004                 | 4.7686e+001  | 3.7786e+001   |
| H40        | -6.2781e-001 | 1.5361e-002  | 9.8463e-001 | -1.4061e-004                | 4.5825e+001  | 3.8222e+001   |
|            | -477.2901    | -0.3096      |             |                             | 561.15       |               |
| S6         | -3.9837e+002 | -3.6754e-001 | 1.6367e+01  | 8.4470e-003                 | 1.7981e+002  | 1.5968e+002   |
| C5         | -3.7899e+001 | -2.1994e-002 | 6.0219e+00  | 1.1678e-003                 | 6.1290e+001  | 5.8165e+001   |
| C4         | -3.7898e+001 | 5.5278e-002  | 5.9447e+00  | 1.7917e-003                 | 6.8576e+001  | 6.1560e+001   |
| H27        | -6.4134e-001 | -6.0088e-002 | 1.0600e+00  | 8.8778e-004                 | 5.4542e+001  | 4.0733e+001   |
| H28        | -6.1920e-001 | 3.8665e-003  | 9.9613e-001 | -5.8473e-005                | 5.1640e+001  | 4.0353e+001   |
| H29        | -6.3784e-001 | -4.6601e-002 | 1.0466e+00  | 4.7762e-004                 | 5.4258e+001  | 4.0438e+001   |
| H37        | -6.2898e-001 | 2.4515e-003  | 9.9754e-001 | 7.7038e-004                 | 4.9179e+001  | 3.8240e+001   |
| H38        | -6.2462e-001 | 1.3678e-002  | 9.8632e-001 | 2.0959e-004                 | 4.8945e+001  | 3.7912e+001   |
|            | -477.3253    | -0.4209      |             |                             | 568.25       |               |
| S9         | -3.9830e+002 | -4.4728e-001 | 1.6447e+01  | 7.7608e-003                 | 2.3846e+002  | 1.9414e+002   |
| C7         | -3.7872e+001 | 1.0153e-001  | 5.8984e+00  | -8.0623e-003                | 6.7076e+001  | 6.0334e+001   |
| C8         | -3.7853e+001 | 3.1195e-002  | 5.9688e+00  | -6.5341e-003                | 6.1897e+001  | 5.8025e+001   |
| H21        | -6.3550e-001 | -4.2655e-002 | 1.0426e+00  | 5.3394e-004                 | 5.4689e+001  | 4.0378e+001   |
| H22        | -6.3736e-001 | -4.7279e-002 | 1.0472e+00  | 5.0596e-004                 | 5.4913e+001  | 4.0617e+001   |
| H23        | -6.3811e-001 | -5.3547e-002 | 1.0535e+00  | 3.3103e-004                 | 5.4417e+001  | 4.0366e+001   |
| H35        | -6.4157e-001 | -2.8814e-002 | 1.0288e+00  | 8.0251e-004                 | 5.1434e+001  | 3.8974e+001   |
| H36        | -6.3553e-001 | -1.5332e-002 | 1.0153e+00  | -2.5600e-004                | 5.0335e+001  | 3.9415e+001   |
|            | -477.2186    | -0.5021      |             |                             | 633.22       |               |
| <b>S</b> 3 | -3.9832e+002 | -4.4518e-001 | 1.6445e+01  | -3.1898e-003                | 2.3285e+002  | 1.9121e+002   |
| C2         | -3.7839e+001 | 3.6651e-002  | 5.9633e+00  | -3.1537e-003                | 5.9268e+001  | 5.6314e+001   |
| C1         | -3.7870e+001 | 6.2530e-002  | 5.9374e+00  | -9.1454e-003                | 6.8288e+001  | 6.1396e+001   |
| H24        | -6.2944e-001 | -3.1592e-002 | 1.0315e+00  | -5.2412e-004                | 5.3885e+001  | 4.0148e+001   |
| H25        | -6.3498e-001 | -3.9422e-002 | 1.0394e+00  | 7.4187e-004                 | 5.3876e+001  | 4.0589e+001   |
| H26        | -6.4348e-001 | -7.1825e-002 | 1.0718e+00  | 6.3313e-004                 | 5.5710e+001  | 4.1790e+001   |
| H34        | -6.3190e-001 | -2.1667e-003 | 1.0021e+00  | 6.9590e-004                 | 4.7155e+001  | 3.8033e+001   |
| H33        | -6.3555e-001 | -9.8434e-003 | 1.0098e+00  | 5.9303e-004                 | 4.9852e+001  | 3.9578e+001   |
|            | -477.2130    | -0.5008      |             |                             | 620.90       |               |
| Fe         | -1.2641e+003 | 9.0725e-001  | 2.5092e+01  | -4.0083e-004                | 7.5513e+001  | 7.2631e+001   |
|            |              |              |             |                             |              |               |
| Ni         | -1.5091e+003 | 5.5632e-001  | 2.7443e+01  | -8.5709e-003                | 1.1095e+002  | 1.0071e+002   |

Table.4. Results of the atomic integrations carried out on all the atoms of 1LS state (a.u) at B3LYP/6-311++G with (2d, 2p) polarizations on all atoms.

Table5. Results of the atomic integrations carried out on all the atoms of 3LS state B3LYP/6-311++G with (2d, 2p) polarizations on all atoms.

|           | ENERGY (a.u) | CHARGE(q)( in a.u) | $\rho(r)$ in (a.u) | $-\nabla 2\rho(\mathbf{r})$ |
|-----------|--------------|--------------------|--------------------|-----------------------------|
| C16       | -3.7539e+1   | 6.1656e-001        | 5.3834e+000        | -9.0908e-005                |
| N17       | -5.5235e+1   | -1.3277e+000       | 8.3277e+000        | -7.9045e-005                |
|           |              |                    |                    |                             |
| C14       | -3.7539e+001 | 6.2213e-001        | 5.3778e+000        | 1.6244e-004                 |
| N15       | -5.5234e+001 | -1.3227e+000       | 8.3227e+000        | -2.8524e-004                |
|           |              |                    |                    |                             |
| C18       | -3.7389e+001 | 9.5552e-001        | 5.0444e+000        | -1.4572e-004                |
| 019       | -7.5882e+001 | -1.1786e+000       | 9.1786e+000        | 1.0077e-003                 |
|           |              |                    |                    |                             |
| S12       | -3.9839e+002 | -3.6083e-001       | 1.6360e+001        | 2.4316e-003                 |
| C11       | -3.7919e+001 | -3.84885e-002      | 6.0384e+000        | 6.7247e-004                 |
| C10       | -3.7889e+001 | 6.1922e-002        | 5.9380e+000        | 7.8677e-004                 |
| H30       | -6.3821e-001 | -5.2921e-002       | 1.0529e+000        | 2.7411e-004                 |
| H31       | -6.3556e-001 | -4.6274e-002       | 1.0462e+000        | 1.7442e-005                 |
| H32       | -6.2723e-001 | -1.7674e-002       | 1.0176e+000        | 2.6465e-004                 |
| H39       | -6.2301e-001 | 1.5441e-002        | 9.8455e-001        | 1.3763e-004                 |
| H40       | -6.2579e-001 | 1.7384e-002        | 9.8261e-001        | 1.2409e-004                 |
|           |              |                    |                    |                             |
| S6        | -3.9838e+002 | -3.4468e-001       | 1.6344e+001        | 2.5413e-003                 |
| C5        | -3.7906e+001 | -2.6682e-002       | 6.0266e+000        | 1.7169e-004                 |
| C4        | -3.7896e+001 | 5.8883e-002        | 5.9411e+000        | 5.5970e-004                 |
| H27       | -6.3939e-001 | -5.7688e-002       | 1.0576e+000        | 2.1420e-004                 |
| H28       | -6.1900e-001 | 2.7920e-003        | 9.9720e-001        | 1.8562e-004                 |
| H29       | -6.3505e-001 | -4.0863e-002       | 1.0408e+000        | 2.5947e-004                 |
| H37       | -6.2857e-001 | 5.1172e-004        | 9.9948e-001        | 3.0610e-004                 |
| H38       | -6.2346e-001 | 1.7181e-002        | 9.8281e-001        | 1.7851e-004                 |
|           |              |                    |                    |                             |
| S9        | -3.9832e+002 | 1.5441e-002        | 9.8455e-001        | 1.3763e-004                 |
| C7        | -3.7901e+001 | 6.5881e-002        | 5.9341e+000        | 1.9558e-004                 |
| C8        | -3.7903e+001 | -2.9288e-002       | 6.0292e+000        | 4.3756e-004                 |
| H21       | -6.3358e-001 | -3.7388e-002       | 1.0373e+000        | 2.6959e-004                 |
| H22       | -6.3552e-001 | -4.3670e-002       | 1.0436e+000        | 2.7737e-004                 |
| H23       | -6.3816e-001 | -5.2812e-002       | 1.0528e+00         | 2.3600e-004                 |
| H35       | -6.4032e-001 | -3.0791e-002       | 1.0307e+000        | 1.7770e-004                 |
| H36       | -6.2946e-001 | 4.0570e-004        | 9.9959e-001        | 2.0074e-004                 |
|           |              |                    |                    |                             |
| <u>S3</u> | -3.9833e+002 | -4.2442e-001       | 1.6424e+001        | 2.9099e-003                 |
| C2        | -3.7886e+001 | -2.1367e-002       | 6.0213e+000        | 8.0529e-004                 |
| C1        | -3.7879e+001 | 5.5072e-002        | 5.9449e+000        | 1.4485e-004                 |
| H24       | -6.3478e-001 | -4.2594e-002       | 1.0425e+000        | 3.2959e-004                 |
| H25       | -6.3422e-001 | -4.0809e-002       | 1.0408e+000        | 3.0639e-004                 |
| H26       | -6.4086e-001 | -6.5252e-002       | 1.0652e+000        | 3.4688e-004                 |
| H34       | -6.3009e-001 | 1.3577e-004        | 9.9986e-001        | 2.0186e-004                 |
| H33       | -6.3302e-001 | -3.8334e-003       | 1.0038e+000        | 2.0727e-004                 |
| -         | 1.0.011 0.02 | 0.0010.001         | 0.5106 001         | 0.007.000                   |
| Fe        | -1.2641e+003 | 8.9313e-001        | 2.5106e+001        | -2.9376e-003                |
| <u>.</u>  | 1.5000       |                    | 0.0400             | 1.0.000                     |
| Ni        | -1.5090e+003 | 5.6176e-001        | 2.7438e+001        | -1.2633e-003                |
| 1144      | 5 7005 001   | 1 2050 002         | 1.0120             | 1 5455 001                  |
| H41       | -5.7905e-001 | -1.3858e-002       | 1.0138e+000        | 1.5455e-004                 |
| H42       | -5.9019e-001 | -1.8419e-002       | 1.0184e+000        | 1.9501e-004                 |
|           |              |                    |                    |                             |

Table.6 Results of the atomic integrations carried out on all the atoms of 2LS state B3LYP/6-311++G with (2d, 2p) polarizations on all atoms.

|           | Energy (a.u)       | Charge(q in a.u)                   | $\rho(r)$ in a.u | $-\nabla 2\rho(\mathbf{r})$ |
|-----------|--------------------|------------------------------------|------------------|-----------------------------|
| C16       | -3.7536e+001       | 6.2835e-001                        | 5.3716e+000      | -1.9221e-004                |
| N17       | -5.5238e+001       | 3284e+000                          | 8.3284e+000      | -2.0154e-004                |
|           | -92.7753           |                                    |                  |                             |
| C14       | -3.7536e+001       | 6.2044e-001                        | 5.3795e+000      | -1.1654e-004                |
| N15       | -5.5232e+001       | -1.3192e+00                        | 8.3192e+000      | -6.3873e-005                |
|           | -92.7686           |                                    |                  |                             |
| C18       | -3.7364e+001       | 1.0069e+000                        | 4.9930e+000      | -1.9567e-004                |
| 019       | -7.5905e+001       | -1.1683e+00                        | 9.1683e+000      | 9.5673e-004                 |
|           | -113.2708          |                                    |                  |                             |
| S12_brdg  | -3.9840e+002       | -3.8426e-001                       | 1.6384e+001      | 2.2916e-003                 |
| C11       | -3.7915e+001       | -3.8062e-002                       | 6.0380e+000      | 5.9230e-004                 |
| C10       | -3.7888e+001       | 6.5252e-002                        | 5.9347e+000      | 1.3195e-003                 |
| H30       | -6.3810e-001       | -5.1472e-002                       | 1.0514e+000      | 3.1064e-004                 |
| H31       | -6.3447e-001       | -4.1704e-002                       | 1.0417e+000      | 2.1869e-004                 |
| H32       | -6.2712e-001       | -1.7415e-002                       | 1.0174e+000      | 2.1593e-004                 |
| H39       | -6.2480e-001       | 7.0523e-003                        | 9.9294e-001      | 1.7348e-004                 |
| H40       | -6.3107e-001       | 5.7833e-003                        | 9.9421e-001      | 2.6930e-004                 |
|           | -477.3688          |                                    |                  |                             |
| S6_brdg   | -3.9836e+002       | -3.6345e-001                       | 1.6363e+001      | 2.9615e-003                 |
| C5        | -3.7857e+001       | 3.2970e-002                        | 5.9670e+000      | -6.1376e-003                |
| C4        | -3.7897e+001       | 5.7140e-002                        | 5.9428e+000      | 7.1261e-004                 |
| H27       | -6.3920e-001       | -5.7212e-002                       | 1.0572e+000      | 2.2841e-004                 |
| H28       | -6.1688e-001       | 8.3496e-003                        | 9.9165e-001      | 2.7286e-004                 |
| H29       | -6.3357e-001       | -3.7505e-002                       | 1.0375e+000      | 2.4001e-004                 |
| H37       | -6.2046e-001       | 2.2070e-002                        | 9.7792e-001      | 2.7156e-004                 |
| H38       | -6.3110e-001       | -8.0772e-003                       | 1.0080e+000      | 2.0820e-004                 |
|           | -477.2653          |                                    |                  |                             |
| S9        | -3.9830e+002       | -4.6874e-001                       | 1.6468e+001      | 1.7997e-003                 |
| C7        | -3.7902e+001       | 6.6807e-002                        | 5.9331e+000      | -8.7084e-004                |
| <u>C8</u> | -3.7887e+001       | -2.1007e-002                       | 6.0210e+000      | 1.0727e-003                 |
| H21       | -6.32783e-001      | -3.7072e-002                       | 1.03/0e+000      | 2.7689e-004                 |
| H22       | -6.3486e-001       | -4.2/53e-002                       | 1.042/e+000      | 2.9411e-004                 |
| H23       | -6.3952e-001       | -5.8348e-002                       | 1.0583e+000      | 2.9494e-005                 |
| H35       | -6.4286e-001       | -3./186e-002                       | 1.03/1e+000      | 1./094e-004                 |
| H36       | -6.3851e-001       | -2.35/8e-002                       | 1.0235e+000      | 2.1//9e-004                 |
| 62        | -4//.2804          | 4 4165 - 001                       | 1 6441 - 1 001   | 2 1221 - 002                |
| <u> </u>  | 2 7881 - 1001      | -4.41030-001                       | 6.0222a+000      | 2.12210-005                 |
| <u>C1</u> | $-3.7870_{e}+0.01$ | <u>-2.23936-002</u><br>5.6383a.002 | 5.0223e+000      | -3.0771e-003                |
| H24       | -6 3300- 001       | -3 86/8= 002                       | 1.0386=+000      | 2 9839- 004                 |
| H25       | -6.3370e-001       | -3.7838e-002                       | 1.0378e+000      | 2.36376-004                 |
| H26       | -6 4067e-001       | -6 5309e-002                       | 1.05780+000      | 3 4697e-004                 |
| H34       | -6 2859e-001       | 5 3181e-003                        | 9.9468e-001      | 2 0631e-004                 |
| H33       | -6 3268e-001       | -3 6944e-003                       | 1.0036e+000      | 1 8816e-004                 |
| 1155      | -477 2784          | 5.07+10-005                        | 1.00500+000      | 1.00100-004                 |
| Fe        | -1 2641e+003       | 9.0899e-001                        | 2.5091e+001      | -5.6179e-005                |
| 10        | 1.20410+003        | 7.00770-001                        | 2.50710+001      | 5.01770-005                 |
| Ni20      | -1.5091e+003       | 5.7344e-001                        | 2.7426e+001      | -1.3468e-003                |
|           |                    |                                    |                  |                             |
| H41       | -5.8461e-001       | 2.6558e-002                        | 9.7344e-001      | 2.2065e-004                 |
| H42       | -5.9630e-001       | -1.5313e-002                       | 1.0153e+000      | 1.6993e-004                 |
|           | -1.1809            |                                    |                  |                             |

Table.7 Results of the atomic integrations carried out over all the atoms of 4LS state B3LYP/6-311++G with (2d, 2p) polarizations on all atoms.

|           | Energy(a.u)   | nergy(a.u) Charge(q in a.u) |             | $-\nabla 2\rho(\mathbf{r})$ |  |
|-----------|---------------|-----------------------------|-------------|-----------------------------|--|
| C16       | -3.7536e+001  | 6.1674e-001                 | 5.3832e+000 | -7.6890e-003                |  |
| N17       | -5.5221e+001  | -1.3165e+0                  | 8.3165e+0   | -1.4037e-003                |  |
|           |               |                             |             |                             |  |
| C14       | -3.7530e+001  | 6.3707e-001                 | 5.3629e+000 | -7.7785e-003                |  |
| N15       | -5.5206e+001  | -1.2883e+000                | 8.2883e+000 | -3.5253e-005                |  |
|           |               |                             |             |                             |  |
| C18       | -3.7351e+001  | 1.0130e+000                 | 4.9869e+000 | -8.9518e-003                |  |
| 019       | -7.5888e+001  | -1.1465e+000                | 9.1465e+000 | -2.2240e-003                |  |
|           |               |                             |             |                             |  |
| S12 brdg  | -3.9840e+002  | -3.3530e-001                | 1.6335e+001 | 4.1121e-003                 |  |
| C11       | -3.7889e+001  | -3.0361e-004                | 6.0003e+000 | -4.9672e-003                |  |
| C10       | -3.7844e+001  | 1.3223e-001                 | 5.8677e+000 | -6.1391e-003                |  |
| H30       | -6.4221e-001  | -5.8754e-002                | 1.0587e+000 | 7.3912e-004                 |  |
| H31       | -6.3360e-001  | -3.6759e-002                | 1.0367e+000 | 2.1105e-004                 |  |
| H32       | -6.2674e-001  | -1.6737e-002                | 1.0167e+000 | 3.9122e-004                 |  |
| H30       | -6 18290-001  | 2 17980-002                 | 9 78200-001 | -1 31/70-003                |  |
| H/0       | -6.2479e-001  | 1 339150-002                | 9.8660e-001 | -1.31476-003                |  |
| 1140      | 0.24790-001   | 1.333136-002                | 5.00000-001 | 1.34016-003                 |  |
| S6 brdg   | -3 98370+002  | -3 375/10-001               | 1 63370+001 | 4 00300-002                 |  |
|           | -3 786/01     | 2 70710-001                 | 5 072001    | -5 2510-003                 |  |
| CJ        | -3.78040+001  | 6 10830-002                 | 5.97290+000 | -1 17010-003                |  |
| U4<br>H27 | -6.4549-001   | -6 7/150-002                | 1.0674e+000 | 8 1565e-004                 |  |
| H27       | -0.4349E-001  | 1.00500.002                 | 0.0200.001  | 6.13036-004                 |  |
| H20       | -0.1977e-001  | 2.40762.002                 | 9.9690-001  | -0.36346-003                |  |
| H29       | -0.34270-001  | -3.40768-002                | 1.03400+000 | 0.08100-004                 |  |
| H37       | -6.18810-001  | 2.45666-002 9.75416-00      |             | -1.6/63e-004                |  |
| H38       | -6.33096-001  | -1.6215e-002                | 1.01620+000 | -3.04050-004                |  |
| 50        | 2 092201002   | 2 00210 001                 | 1 62000+001 | 2 7272 002                  |  |
| 39        | -3.98330+002  | -3.99210-001                | 1.03990+001 | 3.73720-003                 |  |
| C7        | -3.78540+001  | 1.42626-001                 | 5.85730+000 | -2.30698-003                |  |
| 6         | -3.78630+001  | 3.00500-002                 | 5.96330+000 | -6.72998-003                |  |
| HZI       | -6.3342e-001  | -3.4397e-002                | 1.0343e+000 | 6.2475e-004                 |  |
| HZZ       | -6.36/10-001  | -4.2979e-002                | 1.0429e+000 | 9.78366-004                 |  |
| H23       | -6.431/e-001  | -6.2975e-002                | 1.0629e+000 | 3.7863e-004                 |  |
| H35       | -6.4614e-001  | -4.52/9e-002                | 1.0452e+000 | 7.3319e-004                 |  |
| H36       | -6.3902e-001  | -2.7305e-002                | 1.0273e+000 | 2.1068e-004                 |  |
|           |               |                             |             |                             |  |
| \$3       | -3.9831e+002  | -5.3192e-001                | 1.6531e+001 | -1.6467e-003                |  |
| C2        | -3.7852e+001  | 2.8199e-002                 | 5.9718e+000 | -4.9907e-003                |  |
| C1        | -3.7830e+001  | 1.3774e-001                 | 5.8622e+000 | -3.2860e-003                |  |
| H24       | -6.3703e-001  | -4.3202e-002                | 1.0432e+000 | 8.4822e-004                 |  |
| H25       | -6.3573e-001  | -4.3293e-002                | 1.0432e+000 | 7.3804e-004                 |  |
| H26       | -6.4930e-001  | -8.2177e-002                | 1.0821e+000 | 6.2367e-004                 |  |
| H34       | -6.3546e-001  | -5.3485e-003                | 1.0053e+000 | 2.5154e-004                 |  |
| H33       | -6.36800e-001 | -8.5319e-003                | 1.0085e+000 | 1.5030e-005                 |  |
|           |               |                             |             |                             |  |
| Fe        | -1.2640e+003  | 9.0675e-001                 | 2.5093e+001 | -3.6933e-003                |  |
|           |               |                             |             |                             |  |
| Ni        | -1.5090e+003  | 5.7239e-001                 | 2.7427e+001 | -2.1234e-003                |  |
|           |               |                             |             |                             |  |
| H41       | -6.0071e-001  | -4.4204e-002                | 1.0442e+000 | -2.2405e-005                |  |
| H42       | -5.7409e-001  | 1.5119e-002                 | 9.8488e-001 | 1.8152e-004                 |  |
|           |               |                             |             |                             |  |
| H43(Fe)   | -5.9607e-001  | -1.0975e-002                | 1.0109e+000 | 1.7408e-004                 |  |
| H44(Fe)   | -5.8848e-001  | 2.1251e-002                 | 9.7874e-001 | 2.1160e-004                 |  |

Table.8 H-H *bcp* properties computed at B3LYP/6-31g(f) for Fe,6-311g++(2d,2p) for Ni and 6-31g(d) on all other atoms

| System   | Ellipticity | ρ(r) in a.u | G(r)        | $-\nabla 2\rho(\mathbf{r})$ | V(r)        |
|----------|-------------|-------------|-------------|-----------------------------|-------------|
| 2HS      | 3.0984e-002 | 2.2566e-001 | 1.0555e-002 | 1.9773e-001                 | 2.1884e-001 |
| 2HSp     | 5.8201e-002 | 5.9924e-002 | 4.7541e-002 | -3.2206e-002                | 6.2876e-002 |
| 2LS      | 2.8263e-002 | 2.2650e-001 | 9.9426e-003 | 2.0130e-001                 | 2.2118e-001 |
| 2LSp     | 3.1664e-002 | 2.2557e-001 | 1.0237e-002 | 1.9799e-001                 | 2.1846e-001 |
| 3LS      | 3.0226e-002 | 2.1055e-001 | 1.5097e-002 | 1.6410e-001                 | 1.9429e-001 |
| 3LSp     | 2.5754e-002 | 2.2153e-001 | 9.2918e-003 | 1.9394e-001                 | 2.1252e-001 |
| 4LS(Ni)  | 1.9344e-002 | 2.2358e-001 | 1.1267e-002 | 1.9716e-001                 | 2.1970e-001 |
| 4LS(Fe)  | 2.8469e-002 | 2.2740e-001 | 9.9225e-003 | 2.0273e-001                 | 2.2257e-001 |
| 4LSp(Fe) | 2.8867e-002 | 2.2731e-001 | 9.6609e-003 | 2.0296e-001                 | 2.2228e-001 |
| 4LSp(Ni) | 2.3267e-00  | 2.2412e-001 | 9.5373e-003 | 1.9933e-001                 | 2.1841e-001 |

Table.9 Topological properties at the bcps between Fe & CN

| Fe-C     | Ellipticity | $\rho(r)$ (a.u) | G(r)        | K(r)        | $-\nabla 2\rho(\mathbf{r})$ | V(r)        |
|----------|-------------|-----------------|-------------|-------------|-----------------------------|-------------|
| 2HS      | 1.1235e-001 | 1.1776e-001     | 1.2498e-001 | 4.0002e-002 | -8.4980e-002                | 1.6498e-001 |
| 2HSp     | 8.2613e-002 | 1.2261e-001     | 1.2669e-001 | 4.4643e-002 | -8.2050e-002                | 1.7133e-001 |
| 2LS      | 1.4221e-001 | 1.1744e-001     | 1.2354e-001 | 3.9769e-002 | -8.3771e-002                | 1.6331e-001 |
| 2LSp     | 8.4798e-002 | 1.2218e-001     | 1.2645e-001 | 4.4234e-002 | -8.2222e-002                | 1.7069e-001 |
| 3LS      | 4.3700e-002 | 1.1276e-001     | 1.2244e-001 | 3.7411e-002 | -8.5029e-002                | 1.5985e-001 |
| 3LSp     | 4.3700e-002 | 1.1276e-001     | 1.2244e-001 | 3.7411e-002 | -8.5029e-002                | 1.5985e-001 |
| 4LS(Ni)  | 5.7303e-002 | 1.1364e-001     | 1.2289e-001 | 3.8071e-002 | -8.4820e-002                | 1.6096e-001 |
| 4LS(Fe)  | 5.5810e-002 | 1.1516e-001     | 1.1948e-001 | 3.9506e-002 | -7.9979e-002                | 1.5899e-001 |
| 4LSp(Fe) | 8.0862e-002 | 1.1487e-001     | 1.2285e-001 | 3.8779e-002 | -8.4072e-002                | 1.6163e-001 |
| 4LSp(Ni) | 1.0061e-001 | 1.2103e-001     | 1.2533e-001 | 4.3354e-002 | -8.1978e-002                | 1.6868e-001 |
| 2HS      | 3.3739e-002 | 1.1497e-001     | 1.2543e-001 | 3.8884e-002 | -8.6545e-002                | 1.6431e-001 |
| 2HSp     | 3.6236e-002 | 1.1602e-001     | 1.2280e-001 | 3.9907e-002 | -8.2893e-002                | 1.6270e-001 |

Table.10 Topological properties at the bcps between C & N in proximal CN group

| C-N  | Ellipticity | Rho(r)    | (a.u) | G(r)   | (a.u) | K(r)      | (a.u) | $-\nabla 2\rho(\mathbf{r})$ (a.u) | V(r)    | (a.u) |
|------|-------------|-----------|-------|--------|-------|-----------|-------|-----------------------------------|---------|-------|
| 1hs  | 2.6605e-003 | 4.6170e-0 | 001   | 7.0857 | e-001 | 8.1346e-0 | 01    | 1.0489e-001                       | 1.5220e |       |
| 1hsp | 5.9265e-003 | 4.7556e-0 | 001   | 7.1331 | e-001 | 8.8273e-0 | 001   | 1.6942e-001                       | 1.5960  |       |
| 1ls  | 1.9167e-003 | 4.6870e-0 | 001   | 7.3648 | e-001 | 8.3223e-0 | 01    | 9.5752e-002                       | 1.5687  |       |
| 1lsp | 6.3157e-003 | 4.7525e-0 | 001   | 7.1170 | e-001 | 8.8185e-0 | 01    | 1.7014e-001                       | 1.5935  |       |
| 2hs  | 8.5102e-004 | 4.7544e-0 | 001   | 7.0774 | e-001 | 8.8280e-0 | 01    | 1.7506e-001                       | 1.5905  |       |
| 2hsp | 8.5102e-004 | 4.7544e-0 | 001   | 7.0774 | e-001 | 8.8280e-0 | 01    | 1.7506e-001                       | 1.5905  |       |
| 2ls  | 1.2077e-003 | 4.7543e-0 | 001   | 7.0690 | e-001 | 8.8265e-0 | 01    | 1.7574e-001                       | 1.5895  |       |
| 2lsp | 2.5593e-004 | 4.7455e-0 | 001   | 7.1495 | e-001 | 8.8044e-0 | 001   | 1.6548e-001                       | 1.5954  |       |
| 3ls  | 5.5695e-003 | 4.7446e-0 | 001   | 7.0038 | e-001 | 8.7963e-0 | 01    | 1.7924e-001                       | 1.5800  |       |
| 3lsp | 7.5575e-003 | 4.7512e-0 | 001   | 7.0924 | e-001 | 8.8135e-0 | 01    | 1.7211e-001                       | 1.5905  |       |
| 4ls  | 1.4147e-003 | 4.7719e-0 | 001   | 7.1305 | e-001 | 8.8773e-0 | 01    | 1.7468e-001                       | 1.6007  |       |
| 4lsp | 9.2965e-004 | 4.7640e-0 | 001   | 7.1833 | e-001 | 8.8556e-0 | 01    | 1.6723e-001                       | 1.6039  |       |

Table.11 Natural spin densities at the triplet cases computed at B3LYP/6-311++G (d, p) level.

|                           | 1HS    | 1HSp   | 2HS    | 2HSp   |
|---------------------------|--------|--------|--------|--------|
| Fe                        | 0.005  | 0.181  | 0.111  | -0.009 |
| Ni                        | 1.399  | -0.003 | -0.001 | 1.416  |
| S                         | 0.103  | -0.005 | 0.249  | 0.097  |
| S                         | 0.144  | -0.007 | 0.097  | 0.249  |
| S                         | 0.079  | 0.000  | 0.121  | 0.121  |
| S                         | 0.245  | -0.009 | 0.111  | 0.111  |
| Total                     |        |        |        |        |
| Spin density              | 2.000  | 2.000  | 2.00   | 2.000  |
| Spin contamination        |        |        |        |        |
| <s2> value</s2>           | 2.0083 | 2.0114 | 2.0094 | 2.0097 |
| Spin assigned to Fe       | αß     | αß     | αß     | αß     |
| Spin assigned to Ni       | αβαα   | αβαα   | αβαα   | αβαα   |
| Net Charge of the complex | -2     | -1     | -2     | -1     |

Table.12 Relative energies of the 12 states and their total charges computed at the B3LYP/6-311++G with (2d, 2p) polarizations on all atoms.

|                                   | 1HS      | 1HSp | 1LS     | 1LSp    | 2HS    | 2HSp   | 2LS    | 2LSp   | 3LS    | 3LSp   | 4LS    | 4LSp   |
|-----------------------------------|----------|------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| CHARGE                            | -2       | -1   | -2      | -1      | -2     | -1     | -2     | -1     | -2     | -1     | -2     | -1     |
| MULTIPLICIY                       | 3        | 3    | 1       | 1       | 3      | 3      | 1      | 1      | 1      | 1      | 1      | 1      |
| RELATIVE<br>ENERGY<br>(IN Hatree) | -0.73024 | 0    | -0.7489 | -0.0105 | 0.5772 | 1.1835 | 0.5605 | 0.5541 | 0.5595 | 1.1715 | 1.7235 | 2.3474 |

#### Results of the computations carried out at B3LYP/LANL2DZ.

Figure.1 Plot of  $\rho(\mathbf{r})$  at the M-H<sub>2</sub>*bcp* (represented in black) and at the H-H *bcp* (represented in red).where  $\rho(\mathbf{r})$  values are in a.u



Figure.2 Volume of Ni atom at an isodensity surface of 0.001 a.u ,X-axis is volume of the Ni atom in au<sup>3</sup>







Figure.4 Energy of the atomic basins of Fe in green and Ni in red in the lowspin protonated cases. x-axis represents the energy at the atomic basins  $\Delta E(\Omega)$  in a.u



References:

- [88] R. F. W. Bader, Acc. Chem. Res. 1985, 18, 9-15.
- [89] R. F. W. Bader, *Atoms in Molecules A Quantum Theory*, Oxford University Press, New York, **1990**.
- [90] R. Bader, J. Phys. Chem. A 1998, 102, 7314-7323.
- [91] R. F. W. Bader, Chem. Rev. 1991, 91, 893-928.