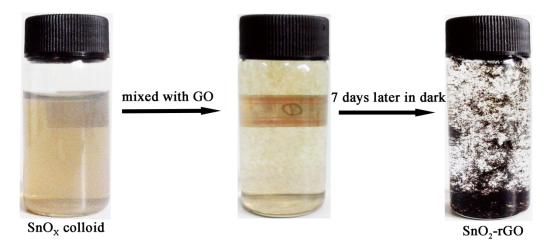
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

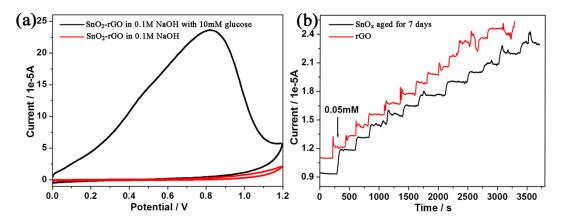
Supplementary Information

A novel reduction approach to fabricate quantum-sized SnO₂-conjugated reduced graphene oxide nanocomposite as a non-enzymatic glucose sensor

Yixing Ye, ^a Panpan Wang, ^a Enmei Dai, ^a Jun Liu, ^a Zhenfei Tian, ^a Changhao Liang,*


^a Guosheng Shao^b

^aKey Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
 ^bInstitute for Renewable Energy and Environmental Technologies, University of Bolton, Bolton BL3 5AB, UK.


*Corresponding author. Tel.: +86 551 65591129; Fax: +86 551 65591434.

E-mail address: chliang@issp.ac.cn (C. H. Liang).

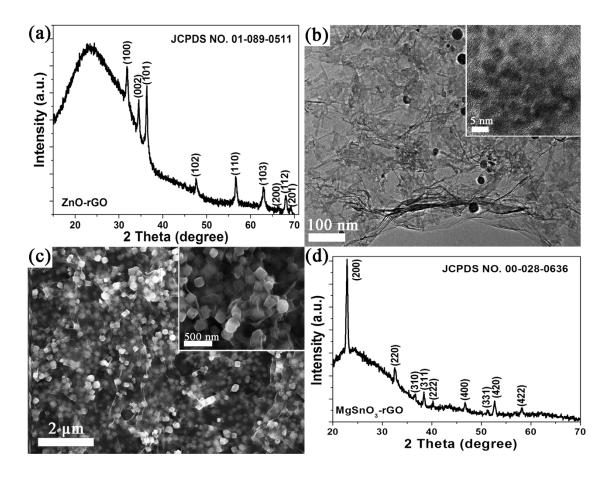

Figure S1 displayed the colour change of outcomes during the reaction process. With the ending of the reaction, the initial yellow colour-like suspension was changed to black. Figure S2 (a) exhibited the CV curves of SnO₂-rGO modified GCE in 0.1M NaOH with (black line) and without (red line) 10mM glucose at a scan rate of 50mV/s. With the adding of 10mM glucose, there is a significant response, which proved the feasibility of using SnO₂-rGO modified GCE in glucose detection. As a comparison, Figure S2 (b) showed i-t curves of aged SnO_X colloid and rGO, respectively, which have been done for as-prepared SnO₂-rGO modified GCE. We also can see the poor performance of aged SnO_X colloid and rGO at glucose detection experiment from the figure S2 (b). Figure S3 was the morphology and phase characterization of asprepared other graphene composites in the same way (ZnO-rGO and MgSnO₃-rGO). Figure S3 (a) and (d) were the XRD patterns of ZnO-rGO and MgSnO₃-rGO, which proved the composition of the result products. Figure S3 (b) illustrate that ZnO loading on rGO showed a sheet morphology assembled with quantum-dots. And MgSnO₃ exhibited a cube structure in Figure S3 (c). The detail information will be discussed in other works.

Fig. S1 Digital images of colloidal product from SnO_X NPs to SnO₂-rGO nanocomposites.

Fig. S2 (a) is the CV curves of SnO_2 -rGO modified GCE in 0.1M NaOH with (black line) and without (red line) 10mM glucose at a scan rate of 50mV/s. (b) is the i-t curves carried out in 0.1M NaOH with the successive addition of 0.05mM glucose for the aged SnO_X colloid and rGO alone, respectively.

Fig. S3 (a) and (d) are the XRD phase characterization of ZnO-rGO and MgSnO₃-rGO. (b) and (c) are the morphology characterization of ZnO-rGO and MgSnO₃-rGO.