Self-healing Mechanism of Metallopolymers investigated

by QM/MM Simulations and Raman Spectroscopy

Stephan Kupfer^{1,2,§}, Linda Zedler^{1,2,§}, Julien Guthmuller³, Stefan Bode^{4,5}, Martin D. Hager^{4,5}, Ulrich S. Schubert^{4,5}, Jürgen Popp^{1,2,6}, Stefanie Gräfe^{1,2}, Benjamin Dietzek^{1,2,6*}

¹Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany

²Abbe Center of Photonics, Friedrich Schiller University Jena

³Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80233 Gdansk, Poland

⁴Laboratory for Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldstr. 10, 07743, Jena, Germany

⁵Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany

⁶Institute for Photonic Technology (IPHT) Jena, Albert-Einstein-Str. 9, 07745, Jena, Germany

Experimental Section

All used chemicals were purchased from Aldrich, ABCR and Hetcat. They were used without further purification. DMSO was dried with activated mol sieves. Elemental analyses were carried out on a Vario EL III (Elementar) elemental analyzer.

¹H and ¹³C NMR spectra were recorded on a Bruker AC 250 (250 MHz) at 298 K. Chemical shifts are reported in parts per million (ppm, δ scale) relative to the residual signal of the solvent. Coupling constants are given in Hz.

6-(2,2':6',2"-Terpyridin-4'-yloxy)-hexan-1-ol (1) was prepared according to literature.^[1]

Conversion of 1 with iron(II) sulfate

338 mg (0.97 mmol) of **1** were dissolved in 40 mL methanol. Subsequently, 135 mg iron(II) sulfate heptahydrate (0.49 mmol) were added and the color changed to dark violet. The reaction mixture was stirred for further 18 hours. Afterwards the solvent was evaporated and the residue was washed with 200 mL diethyl ether.

¹**H** NMR (250 MHz, CD₃OD): $\delta = 1.55 - 2.28$ (m, 8H), 3.65 (t, J = 6 Hz, 2H), 4.70 (t, J = 6 Hz, 2H), 7.19 (m, 4H), 7.95 (t, J = 7.25 Hz, 2H), 8.70 (m, 4H) ppm.

¹³**C** NMR (62.5 MHz, CD₃OD): δ = 25.3, 25.7, 28.7, 32.2, 61.5, 70.3, 111.2, 123.6, 127.1, 138.5, 152.7, 158.3, 160.8, 168.4 ppm.

Anal. calcd. for C₄₂H₄₆N₆O₈SFe: C 59.79, H 5.45, N 9.88, S 3.77; found: C 59.40, H 5.59, N 9.99, S 3.72

Conversion of 1 with cadmium(II) bromide

297 mg (0.85 mmol) of **1** were dissolved in 40 mL methanol. Subsequently, 147 mg cadmium(II) bromide tetrahydrate (0.43 mmol) were added and a precipitate formed. The reaction mixture was stirred for further 18 hours. Afterwards the product was obtained by filtration and was washed with 300 mL diethyl ether.

¹H NMR and ¹³C NMR were not measure due to the bad solubility of the product in all common solvents.

Anal. calcd. for $C_{42}H_{46}N_6O_4Br_2Cd$: C 51.95, H 4.77, N 8.65, Br 16.46; found: C 51.95, H 4.75, N 8.80, Br 16.86

References

U. S. Schubert, C. Eschbaumer, O. Hien, P. R. Andres, *Tetrahedron Lett.* 2001, 42, 4705–4707.

Schematic representation of the iron(II) terpyridine sulfate complex (a)), the cadmium(II) terpyridine bromide complex (b)), and the free terpyridine ligand (c)). d) depict the model systems used for the simulation of the Raman spectra of the iron(II) sulfate and the cadmium(II) bromide cross-linked metallopolymers, and e) the semi-decomplexed

metallopolymer. The polymer model used in the calculation of the ionic clusters is illustrated in f); frozen coordinate R is indicated.

Temperature-dependent Raman spectra of the iron(II) sulfate (a)) and cadmium(II) bromide (b)) cross-linked metallopolymers in the spectral range between 1400 and 1650 cm⁻¹. Vertical dashed lines indicate the observed fully reversible bathochromic shifts of approximately 3 and 4 and 1.4 cm⁻¹.

mode 1463

Intense vibrational modes of the iron(II) sulfate metallopolymer contributing to the experimental Raman bands at 1546, 1558, and 1606 cm⁻¹.

Intense vibrational modes of the semi-decomplexed iron(II) sulfate metallopolymer.

Table S5

iron(II) sulfate metallopolymer											
	B3LYP(15)/6-31G(d)			B3LYP(15)/6-311G(d)			B3LYP/6-31G(d)				
assignment	mode	$\tilde{\nu}/cm^{-1}$	I / Å ⁴ amu ^{- 1}	mode	\tilde{v}/cm^{-1}	I / Å ⁴ amu ^{- 1}	mode	\tilde{v}/cm^{-1}	I / Å ⁴ amu ^{- 1}		
free tpy asym	1415	1581.3	335	1415	1569.3	294	1417	1593.8	340		
free tpy asym	1416	1581.7	309	1416	1569.6	212	1418	1594.2	312		
free tpy sym	1417	1584.9	593	1417	1572.6	557	1421	1597.5	550		
free tpy sym	1418	1585.0	605	1418	1572.8	610	1422	1597.6	572		
complex tpy asym	1422	1593.5	94	1422	1583.2	210	1426	1606.1	114		
complex tpy asym	1424	1594.5	200	1424	1583.8	87	1427	1607.8	217		
complex tpy sym	1425	1595.3	42	1425	1587.9	70	1428	1608.1	43		
complex tpy sym	1428	1602.3	394	1428	1591.1	385	1432	1615.0	458		
free tpy sym	1450	1658.7	144	1445	1650.5	147	1460	1668.2	138		
complex tpy sym	1452	1661.7	58	1447	1654.1	137	1462	1678.1	124		
free tpy sym	1461	1668.7	123	1453	1660.8	129	1464	1679.8	111		
complex tpy sym	1462	1669.7	65	-	-	-	1466	1681.1	39		
complex tpy sym	1463	1670.6	113	1455	1662.9	107	1468	1683.8	36		
		iror	n(II) sulfate sem	ni-decor	nplexed m	etallopolymer					
	B3LYP(15)/6-31G(d)			Bâ	3LYP(15)/6	5-311G(d)	B3LYP/6-31G(d)				
assignment	mode	$\tilde{\nu}/cm^{-1}$	I / Å ⁴ amu ^{- 1}	mode	$\tilde{\nu}/cm^{-1}$	I / Å ⁴ amu ^{- 1}	mode	\tilde{v}/cm^{-1}	I / Å ⁴ amu ^{- 1}		
free tpy asym	716	1581.8	305	707	1570.0	209	717	1594.3	312		
free tpy sym	717	1585.0	602	710	1572.8	606	718	1597.7	569		
complex tpy asym	720	1592.9	57	718	1583.0	65	721	1605.9	86		
complex tpy sym	721	1595.9	113	719	1584.0	63	723	1608.1	65		
free tpy sym	733	1658.3	127	730	1650.2	147	738	1668.1	141		
complex tpy sym	739	1671.7	185	736	1664.0	177	740	1681.8	124		

Assignment and comparison of the calculated vibrational frequencies (cm⁻¹) and relative Raman activities ($Å^4 amu^{-1}$) for the iron(II) sulfate cross-linked metallopolymer as well as its semi-decomplexated form obtained at the B3LYP15/6-31G(d), B3LYP15/6-311G(d), and B3LYP/6-31G(d) levels of theory.

Raman spectra of the iron(II) sulfate metallopolymer. a) depicts temperature-dependent Raman spectra at 23 and 100 °C along with the thermally induced bathochromic shifts of the intensity pattern. b) and c) display calculated Raman spectra at the QM/MM level of theory using B3LYP(15) and the 6-311G(d) basis set and the universal force field for two polymer models. Vibrational modes centered at the *bis*terpyridine-iron(II) complex are shown in red

and modes of the free terminal terpyridine moieties are shown in blue.

Raman spectra of the iron(II) sulfate metallopolymer. a) depicts temperature-dependent Raman spectra at 23 and 100 °C along with the thermally induced bathochromic shifts of the intensity pattern. b) and c) display calculated Raman spectra at the QM/MM level of theory using B3LYP and the 6-31G(d) basis set and the universal force field for two polymer models. Vibrational modes centered at the *bis*terpyridine-iron(II) complex are shown in red

and modes of the free terminal terpyridine moieties are shown in blue.

Raman spectra of the iron(II) sulfate a), cadmium(II) bromide b), and terpyridine c) monomers measured upon excitation at 568 nm. Raman frequencies for bands correlated to the observed bathochromic shifts of the metallopolymers are indicated.

Intense vibrational modes of the cadmium(II) bromide metallopolymer contributing to the experimental Raman bands at 1597 and 1724 cm⁻¹.

Table S10

cadmium(II) bromide metallopolymer											
	В	3LYP(15)/	'6-31G(d)	B3LYP(15)/6-311G(d)			B3LYP/6-31G(d)				
assignment	mode	$\tilde{\nu}/cm^{-1}$	I / Å ⁴ amu ^{- 1}	mode	$\tilde{\nu}/cm^{-1}$	I / Å ⁴ amu ^{- 1}	mode	$\tilde{\nu}/cm^{-1}$	I / Å ⁴ amu ^{- 1}		
complex tpy sym	1381	1568.0	668	1370	1556.1	788	1402	1580.4	779		
complex tpy sym	1384	1569.2	366	1373	1558.0	387	1403	1581.7	286		
free tpy asym	1406	1581.3	333	1387	1569.2	308	1409	1593.8	341		
free tpy asym	1407	1581.7	318	1389	1570.0	116	1411	1594.3	320		
free tpy sym	1409	1584.9	593	1396	1572.6	341	1413	1597.5	555		
free tpy sym	1410	1585.1	586	1398	1572.8	587	1414	1597.8	554		
complex tpy asym	1411	1586.0	60	1408	1576.8	64	1415	1598.5	44		
complex tpy asym	1412	1586.3	274	1409	1577.2	284	1416	1598.9	247		
complex tpy sym	1414	1590.5	235	1412	1581.2	259	1418	1603.7	113		
complex tpy sym	1415	1591.0	99	1413	1581.8	81	1419	1603.8	241		
complex tpy asym	1420	1600.9	701	1415	1589.1	581	1421	1611.9	469		
complex tpy asym	1421	1602.1	469	1418	1593.3	176	1424	1613.4	451		
free tpy asym	1423	1608.7	96	1421	1597.5	73	1426	1419.2	93		
free tpy asym	1426	1614.3	89	1423	1603.5	89	1427	1624.1	87		
free tpy sym	1441	1658.1	143	1435	1649.9	149	1450	1667.9	140		
complex tpy sym	1444	1663.6	62	1440	1656.4	63	1454	1674.9	74		
free tpy sym	1453	1669.2	123	1444	1661.3	128	1455	1678.5	123		
complex tpy sym	1454	1670.2	41	1449	1666.1	47	1465	1690.7	30		

Assignment and comparison of the calculated vibrational frequencies (cm⁻¹) and relative Raman activities ($Å^4 amu^{-1}$) for the iron(II) sulfate cross-linked metallopolymer as well as its semi-decomplexated form obtained at the B3LYP15/6-31G(d), B3LYP15/6-311G(d), and B3LYP/6-31G(d) levels of theory.

Raman spectra of the cadmium(II) bromide metallopolymer. a) depicts temperaturedependent Raman spectra at 23 and 100 °C along with the thermally induced bathochromic shifts of the intensity pattern. b) and c) display calculated Raman spectra at the QM/MM level of theory using B3LYP/6-31G(d) and B3LYP(15)/6-311G(d), respectively, and the universal force field the polymer models. Vibrational modes centered at the *bis*terpyridine-

cadmium(II) complex are shown in red and modes of the free terminal terpyridine moieties are shown in blue.

Simulated UV-vis spectrum of the cadmium(II) bromide metallopolymer in the gas phase performed at the QM/MM level of theory using TD-B3LYP(15) with the 6-31G(d) basis set and the UFF; the red line corresponds to excitation wavelength used in the Raman measurements.

Calculation of the relaxed PES of the cadmium(II) bromide metallopolymer at the QM/MM level of theory using B3LYP(15) with the 6-31G(d) basis set and the universal force field with respect to the distance *R* describing the cleavage of the ionic cluster up to R = 30 Å. b) and c) depicts the global minimum of the PES (R = 4.0 Å) and the opened cluster at R = 30 Å in the orthogonal oriented conformation.