Supplementary Information

Substituted diphenyl butadiynes: a computational study of geometries and electronic transitions using DFT/TD-DFT

Avik Kumar Pati,[†] Santosh J. Gharpure*^{†,‡} and Ashok K. Mishra*[†]

[†]Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036,

Tamil Nadu, India, [‡]Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

Table of Contents: 1. Optimized ground state geometry of the fluorophores (Fig. S1), 2. Mulliken charge analysis of Me₂NMe₂N (Fig. S2), PhMe₂N (Fig. S3), Me₂NOMe (Fig. S4), and Me₂NCN (Fig. S5), 3. Combined plot of Mulliken charge analysis of PhMe₂N and Me₂NCN (Fig. S6), 4. Correlation of C(Ph)–O(OMe) bond length with dielectric constant (Fig. S7), 5. UV-vis experimental absorption spectra of the fluorophores in cyclohexane (Fig. S8 and S9), 6. Variation of absorption wavelength with dielectric constant (Fig. S10 and S11), 7. Variation of HOMO and LUMO energy for different fluorophores (Fig. S12), 8. Orbital contributions $(S_0 \rightarrow S_1)$ for the fluorophores (Table S1 and S2), 9. TDDFT potential energy curves (Fig. S13 and S14), 10. Correlation between experimental and TD-DFT absorption wavelength in DCM (Fig. S15), MeOH (Fig. S16), and CH₃CN (Fig. S17), 11. Correlation of vertical excitation energy with (a) twist angle, (b) pyramidalization, and (c) C(Ph)-N(NMe₂) bond length in Me₂NOMe (Fig. S18) and Me₂NCN (Fig. S19), 12. Optimized LE state geometry of the fluorophores (Fig. S20), 13. Geometrical parameters of ICT state of PhMe₂N (Fig. S21), 14. ICT emission energy of PhCN and Me₂NCN (Table S3), 15. HOMO and LUMO in ICT emissive state in CH₃CN (Fig. S22), 16. Magnitude of absorption and LE TDM (Table S4), 17. Cartesian co-ordinates of the optimized geometries.

Molecules	Cyclohexane	CH ₃ CN
PhPh		
ОМеОМе		
PhCN		
PhOMe		
PhMe ₂ N		
Me ₂ NOMe		
Me ₂ NCN		

Fig. S1 Optimized ground state geometry of the fluorophores using B3LYP/6-311G(d,p)

Fig. S2 Mulliken charge analysis of C3 of the derivative Me₂NMe₂N using B3LYP/6-

311G(d,p)

Fig. S3 Mulliken charge analysis of C1, C2, and C3 of the derivative **PhMe₂N** using B3LYP/6-311G(d,p)

B3LYP/6-311G(d,p)

Fig. S5 Mulliken charge analysis of C1, C2, and C3 of the derivative **Me₂NCN** using B3LYP/6-311G(d,p)

Fig. S6 Mulliken charge analysis of C3 of the derivative PhMe₂N and Me₂NCN using

B3LYP/6-311G(d,p)

Fig. S7 Correlation of C(Ph)–O(OMe) bond length with dielectric constant at ground state B3LYP/6-311G(d,p) optimized geometry

Fig. S8 UV-vis experimental absorption spectra of (a) **PhPh**, (b) **PhOMe**, (c) **OMeOMe**, and (d) **PhCN** in cyclohexane (concentration = 1×10^{-5} M) with high resolution (JASCO V-650,

bandwidth = 0.5 nm)

Fig. S9 UV-vis experimental absorption spectra of (a) **PhMe**₂**N**, (b) **Me**₂**NOMe**, (c) **Me**₂**NMe**₂**N**, and (d) **Me**₂**NCN** in cyclohexane (concentration = 1×10^{-5} M for a, b, c and concentration = 1.9×10^{-5} M for d) with high resolution (JASCO V-650, bandwidth = 0.5 nm)

Fig. S10 Variation of absorption wavelength with dielectric constant for (a) **PhPh**, (b) **PhOMe**, (c) **OMeOMe**, and (d) **PhCN** using CAM-B3LYP/6-311+G(d,p)

Fig. S11 Variation of absorption wavelength with dielectric constant for (a) PhMe₂N, (b)Me₂NOMe, (c) Me₂NMe₂N, and (d) Me₂NCN using CAM-B3LYP/6-311+G(d,p)

Fig. S12 Variation of HOMO and LUMO energy of different butadiynyl fluorophores in (a) gas phase, (b) cyclohexane, (c) methanol, and (d) CH₃CN using B3LYP/6-311G(d,p)

Malaayla		% of orbital contributions						
Molecule	BLYP/	PBE/	B3LYP/	B98/	PBE0/			
	6-311G(d,p)	6-311G(d,p)	6-311G(d,p)	6-311G(d,p)	6-311G(d,p)			
PhPh	H→L (95%)	H→L (95%)	H→L (93%)	H→L (93%)	H→L (93%)			
	H-1→L+1 (5%)	H-1→L+1 (5%)	H-1→L+1 (7%)	H-1→L+1 (7%)	H-1→L+1 (7%)			
OMeOMe	H→L (97%)	H→L (97%)	H→L (95%)	H→L (94%)	H→L (94%)			
	H-2→L+3 (3%)	H-2→L+3 (2%)	H-2→L+3 (5%)	H-2→L+3 (5%)	H-2→L+3 (5%)			
Me ₂ NMe ₂ N	H→L (97%)	H→L (97%)	H→L (97%)	H→L (96%)	H→L (96%)			
			H-2→L+1 (2%)	H-2→L+1 (3%)	H-2→L+1 (3%)			
PhCN	H→L (96%)	H→L (96%)	H→L (95%)	H→L (95%)	H→L (95%)			
	H-1→L+3 (2%)	H-1→L+3 (2%)	H-1→L+3 (4%)	H-1→L+3 (2%)	H-1→L+3 (4%)			
PhOMe	H→L (95%)	H→L (95%)	H→L (94%)	H→L (94%)	H→L (94%)			
	H-1→L+2 (3%)	H-1→L+2 (2%)	H-1→L+2 (5%)	H-1→L+1 (5%)	H-1→L+1 (5%)			
PhMe ₂ N	H→L (95%)	H→L (95%)	H→L (96%)	H→L (96%)	H→L (95%)			
	H→L+4 (3%)	H→L+4 (3%)	H-2→L+1 (3%)	H-2→L+1 (3%)	H-2→L+1 (3%)			
Me ₂ NOMe	H→L (95%)	H→L (95%)	H→L (96%)	H→L (96%)	H→L (95%)			
		H→L+4 (2%)	H-2→L+2 (3%)	H-2→L+2 (3%)	H-2→L+2 (3%)			
Me ₂ NCN	H→L (96%)	H→L (96%)	H→L (98%)	H→L (98%)	H→L (97%)			
	H→L+2 (2%)	H→L+2 (2%)						

Table S1 % of orbital contributions $(S_0 \rightarrow S_1)$ for the fluorophores in cyclohexane

	% of orbital contributions				
Molecule	M06-2X/	M05-2X/	LC-BLYP/	LC-PBE/	CAM-B3LYP/
	6-311G(d,p)	6-311G(d,p)	6-311G(d,p)	6-311G(d,p)	6-311G(d,p)
PhPh	H→L (90%)	H→L (89%)	H→L (77%)	H→L (78%)	H→L (86%)
1	H = (5070)	$H \to L + 1 (70/)$	$H \to L + 2 (120/)$	H = (7070)	
	$H-1 \rightarrow L+2 (1\%)$	H-1→L+1 (/%)	$H-1 \rightarrow L+2 (12\%)$	$H-1 \rightarrow L+2 (11\%)$	$H-1 \rightarrow L+2 (9\%)$
			H→L+7 (2%)	H-2→L+1 (4%)	
			H-2→L+1 (4%)	H→L+7 (2%)	
OMeOMe	H→L (90%)	H→L (90%)	H→L (78%)	H→L (79%)	H→L (87%)
	H-2→L+3 (5%)	H-2→L+1 (5%)	H-2→L+3 (10%)	H-2→L+3 (9%)	H-1→L+4 (2%)
			H-5→L (3%)	H-5→L (3%)	H-2→L+3 (7%)
			H-1→L+4 (4%)	H-1→L+4 (4%)	
Me ₂ NMe ₂ N	H→L (91%)	H→L (91%)	H→L (78%)	H→L (79%)	H→L (88%)
	H-1→L+4 (3%)	H-1→L+4 (3%)	H-1→L+4 (5%)	H-1→L+4 (5%)	H-1→L+4 (3%)
	H-2→L+2 (3%)	H-2→L+1 (3%)	H-1→L+1 (2%)	H-1→L+1 (2%)	H-2→L+1 (4%)
			H-2→L+1 (4%)	H-2→L+1 (4%)	H-3→L (2%)
			H-3→L (4%)	H-3→L (4%)	
PhCN	H→L (90%)	H→L (89%)	H→L (75%)	H→L (76%)	H→L (86%)
	H-1→L+3 (5%)	H-1→L+3 (5%)	H-1→L+3 (9%)	H-1→L+3 (9%)	H-1→L+3 (7%)
			H-3→L+1 (4%)	H-3→L+1 (4%)	
			H→L+1 (3%)	H→L+1 (3%)	
			H→L+7 (2%)	H→L+5 (2%)	

Table S2 % of orbital contributions $(S_0 \rightarrow S_1)$ for the fluorophores in cyclohexane

Malagula	% of orbital contributions				
woiecule	M06-2X/	M05-2X/	LC-BLYP/	LC-PBE/	CAM-B3LYP/
	6-311G(d,p)	6-311G(d,p)	6-311G(d,p)	6-311G(d,p)	6-311G(d,p)
PhOMe	H→L (89%)	H→L (89%)	H→L (76%)	H→L (77%)	H→L (85%)
	H-1→L+2 (6%)	H-2→L+1 (6%)	H-2→L+4 (10%)	H-2→L+3(10%)	H-2→L+2 (8%)
			H-1→L+2 (2%)	H-1→L+2 (2%)	
			H-1→L (2%)	H-1→L (2%)	
PhMe ₂ N	H→L (88%)	H→L (87%)	H→L (71%)	H→L (71%)	H→L (83%)
	H-1→L (4%)	H-1→L (4%)	H-1→L (8%)	H-1→L (8%)	H→L+4 (2%)
	H-2→L+1 (4%)	H-2→L+1 (4%)	H-2→L+4 (8%)	H-1→L+2 (3%)	H-1→L (6%)
			H-1→L+2 (3%)	H-2→L+3 (7%)	H-2→L+1 (5%)
			H→L+2 (5%)		
Me ₂ NOMe	H→L (90%)	H→L (89%)	H→L (75%)	H→L (76%)	H→L (85%)
	H-2→L+2 (4%)	H-1→L+4 (2%)	H-1→L+4 (5%)	H-1→L+4 (5%)	H-1→L+4 (2%)
		H-1→L (2%)	H-1→L (4%)	H-1→L (4%)	H-1→L (3%)
		H-1→L+2 (4%)	H-2→L+3 (7%)	H-2→L+3 (7%)	H-2→L+2 (5%)
			H-5→L (2%)	H-5→L (2%)	
Me ₂ NCN	H→L (86%)	H→L (84%)	H→L (62%)	H→L (62%)	H→L (80%)
	H→L+2 (5%)	H→L+1 (5%)	H-1→L (14%)	H-1→L (14%)	H-1→L (8%)
	H-1→L (6%)	H-1→L (6%)	H→L+1 (12%)	H→L+1 (12%)	H-2→L+3 (4%)
	H-2→L+3 (2%)	H-2→L+3 (3%)	H-2→L+3 (6%)	H-2→L+3 (5%)	H→L+1 (6%)

Fig. S13 TDDFT potential energy curves (energy relative to the minimum of the ground state) of the ground and 1st excited singlet state of (a) $PhMe_2N$, (b) PhCN, (c) Me_2NOMe , and (d) Me_2NCN in cyclohexane as a function of twist angle of the phenyl ring around the butadiyne moiety using PBE0/6-311+G(d,p) (expanded energy scale of S₀ is in inset)

Fig. S14 TDDFT potential energy curves (energy relative to the minimum of the ground state) of the ground and 1st excited singlet state of (a) **PhMe₂N**, (b) **PhCN**, (c) **Me₂NOMe**, and (d) **Me₂NCN** in cyclohexane as a function of twist angle of the phenyl ring around the butadiyne moiety using CAM-B3LYP/6-311+G(d,p) (expanded energy scale of S₀ is in inset)

Fig. S15 Correlation between experimental (ref. 1) and TD-DFT absorption wavelength in

DCM using CAM-B3LYP/6-311+G(d,p) level of theory

Fig. S16 Correlation between experimental (ref. 1) and TD-DFT absorption wavelength in MeOH using CAM-B3LYP/6-311+G(d,p) level of theor

Fig. S17 Correlation between experimental (ref. 1) and TD-DFT absorption wavelength in

CH₃CN using CAM-B3LYP/6-311+G(d,p) level of theory

Fig. S18 Correlation between vertical excitation energy and (a) twist angle, (b) pyramidalization, and (c) C(Ph)–N(NMe₂) bond length in **Me₂NOMe**

Fig. S19 Correlation between vertical excitation energy and (a) twist angle, (b) pyramidalization of NMe₂, and (c) C(Ph)–N(NMe₂) bond length in **Me₂NCN**

Fig. S20 Optimized LE state geometry of the fluorophores (a) **PhCN**, (b) **PhOMe**, (c) **PhMe**₂**N**, and (d) **Me**₂**NOMe** in CH₃CN using B3LYP/6-311G(d,p) level of theory

Fig. S21 Geometrical parameters of the optimized ICT state geometry of PhMe₂N

Table S3 ICT emission energy of PhCN and Me2NCN using different functionals and 6-

311+G(d,p) basis set

	ICT emission energies (in eV) in CH ₃ CN					
Molecules	Expt. ^a	B3LYP	PBE0	M052X	LC-BLYP	CAM-B3LYP
PhCN	2.62	2.67	2.75	2.78	3.20	3.01
Me ₂ NCN	2.05	2.03	2.15	2.52	3.04	2.67

Molecules	НОМО	LUMO
PhCN		
PhOMe		
Me ₂ NOMe	**************************************	
Me ₂ NCN	•• ****	***** ***

Fig. S22 HOMO and LUMO of PhCN, PhOMe, Me₂NOMe, and Me₂NCN in ICT emissive

state in CH₃CN

Table S4 Absorption	and LE TDM vector	ors using CAM-B3I	LYP/6-311+G(d,p)
1		0	

Molecules	A	Absorption TDM			LE TDM			
	Magnitude	Vector		Magnitude		Vector		
	(Debye)	X	у	Z	(Debye)	X	У	Z
PhCN	7.12	7.12	0	0	7.97	0	-7.97	0
PhOMe	2.38	-1.53	-1.82	0	2.98	-2.35	-1.84	0
PhMe ₂ N	5.17	5.17	0	0	6.38	6.38	0	0

Cartesian co-ordinates of the optimized ground state geometry of the fluorophores in acetonitrile (B3LYP/6-311G(d,p))

Optimized ground state geometry of PhPh

6	-5.419539000	1.207897000	-0.000870000
6	-4.029818000	1.214109000	-0.000880000
6	-3.315668000	-0.000021000	0.000000000
6	-4.029881000	-1.214112000	0.000883000
6	-5.419603000	-1.207828000	0.000878000
6	-6.118388000	0.000052000	0.000006000
1	-5.959139000	2.147822000	-0.001553000
1	-3.485881000	2.150801000	-0.001565000
1	-3.485995000	-2.150834000	0.001565000
1	-5.959251000	-2.147725000	0.001564000
6	-1.895127000	-0.000056000	-0.000003000
6	-0.678536000	-0.000084000	-0.000007000
6	0.678536000	-0.000043000	-0.000012000
6	1.895127000	-0.000047000	-0.000015000
6	3.315668000	-0.000015000	-0.000006000
6	4.029824000	1.214111000	0.000880000

6	4.029876000	-1.214111000	-0.000883000
6	5.419545000	1.207892000	0.000881000
1	3.485892000	2.150806000	0.001561000
6	5.419597000	-1.207833000	-0.000868000
1	3.485984000	-2.150830000	-0.001570000
6	6.118388000	0.000045000	0.000010000
1	5.959149000	2.147815000	0.001568000
1	5.959241000	-2.147732000	-0.001549000
1	7.202123000	0.000068000	0.000017000
1	-7.202123000	0.000081000	0.000008000

Optimized ground state geometry of PhOMe

6	-4.408263000	-1.019594000	0.001029000
6	-3.018711000	-1.050527000	0.001203000
6	-2.262919000	0.134597000	0.000006000
6	-2.952651000	1.367045000	-0.001364000
6	-4.333572000	1.403307000	-0.001526000
6	-5.076546000	0.211485000	-0.000341000
1	-4.956379000	-1.951540000	0.001958000
1	-2.508734000	-2.006208000	0.002272000

1	-2.389727000	2.292456000	-0.002300000
1	-4.866556000	2.346351000	-0.002582000
6	-0.845903000	0.095494000	0.000150000
6	0.371212000	0.063425000	0.000266000
6	1.727660000	0.029749000	0.000389000
6	2.944271000	-0.000098000	0.000465000
6	4.364449000	-0.033169000	0.000190000
6	5.051374000	-1.263059000	-0.001403000
6	5.107232000	1.163846000	0.001533000
6	6.440954000	-1.288699000	-0.001632000
1	4.486432000	-2.187291000	-0.002443000
6	6.496492000	1.125770000	0.001273000
1	4.585350000	2.113057000	0.002776000
6	7.167865000	-0.097551000	-0.000305000
1	6.958562000	-2.240984000	-0.002860000
1	7.057274000	2.053288000	0.002316000
8	-6.423876000	0.356392000	-0.000657000
6	-7.243233000	-0.816825000	0.000673000
1	-7.067387000	-1.419741000	0.895913000

1	-8.269881000	-0.457558000	0.000362000
1	-7.067521000	-1.421668000	-0.893295000
1	8.251323000	-0.122484000	-0.000497000

Optimized ground state geometry of OMeOMe

6	-5.412534000	1.355126000	0.000166000
6	-4.030888000	1.348221000	0.000126000
6	-3.314316000	0.131181000	-0.000041000
6	-4.045236000	-1.069358000	-0.000157000
6	-5.435509000	-1.067949000	-0.000110000
6	-6.130117000	0.148136000	0.000051000
1	-5.965202000	2.286821000	0.000289000
1	-3.488203000	2.285680000	0.000215000
1	-3.515402000	-2.014213000	-0.000291000
1	-5.963454000	-2.011482000	-0.000196000
6	-1.896258000	0.123261000	-0.000082000
6	-0.678516000	0.120442000	-0.000100000
6	0.678512000	0.120405000	-0.000103000
6	1.896255000	0.123198000	-0.000096000
6	3.314313000	0.131138000	-0.000049000

6	4.030865000	1.348189000	-0.000144000
6	4.045251000	-1.069389000	0.000075000
6	5.412511000	1.355118000	-0.000108000
1	3.488165000	2.285639000	-0.000244000
6	5.435524000	-1.067957000	0.000106000
1	3.515432000	-2.014252000	0.000155000
6	6.130114000	0.148139000	0.000016000
1	5.965165000	2.286822000	-0.000179000
1	5.963483000	-2.011481000	0.000192000
8	-7.481049000	0.264512000	0.000118000
6	-8.274592000	-0.925904000	0.000026000
1	-8.086037000	-1.526193000	0.894553000
1	-9.308908000	-0.589199000	0.000050000
1	-8.086049000	-1.526055000	-0.894595000
8	7.481045000	0.264539000	0.000056000
6	8.274613000	-0.925861000	0.000127000
1	9.308922000	-0.589134000	0.000168000
1	8.086046000	-1.526060000	0.894710000
1	8.086109000	-1.526108000	-0.894437000

Optimized ground state geometry of PhCN

6	-4.573048000	-1.216230000	0.000049000
6	-3.188350000	-1.215078000	0.000066000
6	-2.474738000	0.000098000	0.000015000
6	-3.188481000	1.215197000	-0.000054000
6	-4.573179000	1.216200000	-0.000070000
6	-5.274386000	-0.000053000	-0.000017000
1	-5.115676000	-2.152856000	0.000088000
1	-2.646958000	-2.152269000	0.000118000
1	-2.647190000	2.152447000	-0.000094000
1	-5.115908000	2.152767000	-0.000122000
6	-1.056964000	0.000176000	0.000029000
6	0.159343000	0.000213000	0.000048000
6	1.515045000	0.000144000	0.000077000
6	2.731618000	0.000069000	0.000099000
6	4.151262000	0.000007000	0.000035000
6	4.864197000	-1.214855000	-0.000053000
6	4.864305000	1.214805000	0.000067000

6	6.253673000	-1.208450000	-0.000106000
1	4.319797000	-2.151189000	-0.000077000
6	6.253780000	1.208277000	0.000013000
1	4.319988000	2.151187000	0.000136000
6	6.951807000	-0.000117000	-0.000074000
1	6.793682000	-2.148028000	-0.000173000
1	6.793872000	2.147807000	0.000039000
1	8.035521000	-0.000165000	-0.000117000
6	-6.703142000	-0.000131000	-0.000032000
7	-7.859083000	-0.000191000	-0.000049000

Optimized ground state geometry of PhMe₂N

6	-6.930602000	-1.207115000	-0.001312000
6	-5.540756000	-1.213357000	-0.000543000
6	-4.824229000	-0.000006000	0.001205000
6	-5.540686000	1.213387000	0.002188000
6	-6.930532000	1.207228000	0.001390000
6	-7.630630000	0.000077000	-0.000365000
1	-7.469612000	-2.147551000	-0.002690000
1	-4.997714000	-2.150692000	-0.001331000

1	-4.997589000	2.150689000	0.003531000
1	-7.469488000	2.147695000	0.002130000
6	-3.403914000	-0.000048000	0.001748000
6	-2.186102000	-0.000065000	0.001854000
6	-0.829986000	-0.000086000	0.001504000
6	0.389493000	-0.000125000	0.000615000
6	1.802853000	-0.000093000	-0.001284000
6	2.535731000	-1.205444000	-0.000648000
6	2.535666000	1.205299000	-0.002643000
6	3.917329000	-1.211251000	-0.003377000
1	2.002670000	-2.149122000	0.003031000
6	3.917262000	1.211177000	-0.005388000
1	2.002553000	2.148952000	-0.000567000
6	4.657932000	-0.000019000	-0.009325000
1	4.430347000	-2.162453000	-0.000652000
1	4.430238000	2.162407000	-0.004352000
7	6.026148000	0.000048000	-0.019640000
6	6.763014000	1.257534000	0.009856000
1	6.555895000	1.830880000	0.920974000

1	7.829017000	1.044501000	-0.020498000
1	6.519534000	1.886983000	-0.852716000
6	6.763208000	-1.257293000	0.011086000
1	6.518789000	-1.888132000	-0.850189000
1	7.829146000	-1.044173000	-0.020916000
1	6.557252000	-1.829229000	0.923366000
1	-8.714375000	0.000110000	-0.001000000

Optimized ground state geometry of Me₂NMe₂N

6	5.431005000	0.895820000	-0.814641000
6	4.048464000	0.890253000	-0.810297000
6	3.314785000	0.000402000	0.000929000
6	4.049289000	-0.889138000	0.811748000
6	5.431834000	-0.893882000	0.815573000
6	6.172316000	0.001455000	0.000624000
1	5.942471000	1.599415000	-1.456338000
1	3.515459000	1.587391000	-1.446565000
1	3.516936000	-1.586922000	1.447855000
1	5.943979000	-1.597650000	1.456536000
6	1.898508000	-0.000073000	0.001126000

6	0.678563000	-0.000454000	0.001284000
6	-0.678571000	-0.000848000	0.001439000
6	-1.898516000	-0.001184000	0.001540000
6	-3.314795000	-0.001531000	0.001690000
6	-4.048762000	-0.891242000	-0.809426000
6	-4.049008000	0.888288000	0.812467000
6	-5.431308000	-0.896601000	-0.813507000
1	-3.515986000	-1.588305000	-1.445969000
6	-5.431551000	0.893244000	0.816544000
1	-3.516428000	1.586285000	1.448149000
6	-6.172319000	-0.002431000	0.002235000
1	-5.942991000	-1.599869000	-1.455389000
1	-5.943481000	1.597546000	1.457089000
7	-7.541714000	-0.004009000	0.003878000
6	-8.278009000	0.937117000	0.837913000
1	-8.048303000	1.976633000	0.577642000
1	-9.344462000	0.781344000	0.692212000
1	-8.057134000	0.795017000	1.901781000
6	-8.277990000	-0.929380000	-0.847572000

1	-8.040051000	-1.972457000	-0.611554000	
1	-9.344334000	-0.784412000	-0.690347000	
1	-8.065415000	-0.762765000	-1.909926000	
7	7.541698000	0.002445000	0.001053000	
6	8.278421000	-0.934467000	0.839422000	
1	9.344769000	-0.782269000	0.689242000	
1	8.061103000	-0.785209000	1.903156000	
1	8.045594000	-1.974951000	0.586363000	
6	8.277632000	0.932798000	-0.845257000	
1	9.344063000	0.785514000	-0.690823000	
1	8.063231000	0.772981000	-1.908200000	
1	8.041171000	1.974746000	-0.602441000	

Optimized ground state geometry of Me₂NOMe

6	5.917679000	-1.031783000	-0.000161000
6	4.527032000	-1.049760000	-0.000199000
6	3.780094000	0.141216000	0.000013000
6	4.483590000	1.366100000	0.000264000
6	5.865599000	1.389375000	0.000300000
6	6.598608000	0.191896000	0.000091000

1	6.455334000	-1.970999000	-0.000331000
1	4.009632000	-2.002618000	-0.000397000
1	3.930733000	2.298756000	0.000430000
1	6.406254000	2.329305000	0.000492000
6	2.362056000	0.115328000	-0.000021000
6	1.143930000	0.093713000	-0.000049000
6	-0.212505000	0.069483000	-0.000083000
6	-1.431714000	0.046309000	-0.000115000
6	-2.845654000	0.017138000	-0.000156000
6	-3.553599000	-1.202814000	-0.000024000
6	-3.605117000	1.205696000	-0.000307000
6	-4.935379000	-1.238157000	-0.000058000
1	-3.001475000	-2.136640000	0.000126000
6	-4.987278000	1.182005000	-0.000341000
1	-3.093441000	2.162286000	-0.000378000
6	-5.702626000	-0.043956000	-0.000267000
1	-5.425654000	-2.202395000	0.000066000
1	-5.518682000	2.124249000	-0.000435000
7	-7.071662000	-0.073717000	-0.000451000

6	-7.833826000	1.167270000	0.000285000	
1	-7.621978000	1.775036000	-0.886231000	
1	-8.895999000	0.934965000	-0.000089000	
1	-7.622289000	1.773950000	0.887648000	
6	-7.778504000	-1.346946000	0.000634000	
1	-7.540551000	-1.943724000	0.888076000	
1	-8.849757000	-1.161386000	0.000258000	
1	-7.540266000	-1.945248000	-0.885677000	
8	7.948955000	0.324599000	0.000150000	
6	8.755050000	-0.854627000	-0.000034000	
1	9.785206000	-0.506272000	0.000065000	
1	8.574120000	-1.457633000	0.893868000	
1	8.574183000	-1.457314000	-0.894163000	

Optimized ground state geometry of Me₂NCN

6	-6.095372000	-1.215754000	0.000130000
6	-4.711156000	-1.214849000	0.000945000
6	-3.994228000	-0.000038000	0.001273000
6	-4.711094000	1.214811000	0.000822000
6	-6.095310000	1.215789000	0.000010000

6	-6.798475000	0.000036000	-0.000355000
1	-6.637607000	-2.152769000	-0.000150000
1	-4.170610000	-2.152639000	0.001296000
1	-4.170499000	2.152573000	0.001072000
1	-6.637497000	2.152831000	-0.000365000
6	-2.578505000	-0.000078000	0.001890000
6	-1.360193000	-0.000097000	0.002117000
6	-0.006886000	-0.000102000	0.002028000
6	1.213377000	-0.000031000	0.001478000
6	2.623875000	-0.000013000	-0.000046000
6	3.356395000	-1.206655000	-0.000935000
6	3.356376000	1.206641000	0.000118000
6	4.736868000	-1.212311000	-0.003132000
1	2.822681000	-2.149862000	0.000740000
6	4.736850000	1.212324000	-0.002065000
1	2.822647000	2.149837000	0.002735000
6	5.477426000	0.000016000	-0.006254000
1	5.250408000	-2.163122000	-0.002395000
1	5.250375000	2.163145000	-0.000186000

7	6.843728000	0.000025000	-0.013675000
6	7.581724000	1.257837000	0.004862000
1	7.372167000	1.838778000	0.910136000
1	8.647490000	1.043619000	-0.020358000
1	7.340392000	1.878720000	-0.864384000
6	7.581734000	-1.257763000	0.006563000
1	7.343839000	-1.878110000	-0.864058000
1	8.647574000	-1.043448000	-0.014199000
1	7.368693000	-1.839303000	0.910596000
6	-8.226348000	0.000075000	-0.001248000
7	-9.382643000	0.000077000	-0.001995000

Cartesian co-ordinates of the optimized LE state geometry of the fluorophores in acetonitrile (B3LYP/6-311G(d,p))

Optimized LE state geometry of PhOMe

6	-4.395416000	-1.031390000	-0.002880000
6	-3.017365000	-1.067517000	-0.051484000
6	-2.238573000	0.137360000	-0.062543000
6	-2.953901000	1.384559000	-0.029036000
6	-4.324814000	1.409576000	0.019559000

6	-5.069834000	0.207256000	0.034665000
1	-4.948229000	-1.960990000	0.004379000
1	-2.504423000	-2.021084000	-0.080676000
1	-2.392526000	2.310444000	-0.040344000
1	-4.866352000	2.347897000	0.048738000
6	-0.863331000	0.101865000	-0.103057000
6	0.389586000	0.067833000	-0.111197000
6	1.703409000	0.034277000	-0.103149000
6	2.956557000	0.002389000	-0.087013000
6	4.333993000	-0.031692000	-0.026395000
6	5.047055000	-1.278795000	-0.003286000
6	5.107606000	1.178757000	0.011110000
6	6.427330000	-1.296864000	0.061392000
1	4.483083000	-2.203784000	-0.036487000
6	6.487075000	1.128874000	0.075759000
1	4.589844000	2.130431000	-0.008230000
6	7.164648000	-0.101451000	0.098884000
1	6.946788000	-2.249005000	0.080731000
1	7.052745000	2.054260000	0.104915000

8	-6.408829000	0.351535000	0.083367000
6	-7.242995000	-0.814416000	0.086373000
1	-7.045707000	-1.434161000	0.964978000
1	-8.264246000	-0.441682000	0.123140000
1	-7.094331000	-1.400145000	-0.825721000
1	8.247800000	-0.128184000	0.151426000

Optimized LE state geometry of PhCN

6	1.215752000	4.573336000	0.000000000
6	1.214932000	3.188637000	0.000000000
6	-0.000074000	2.474737000	0.000000000
6	-1.215343000	3.188188000	0.000000000
6	-1.216677000	4.572886000	0.000000000
6	-0.000592000	5.274386000	0.000000000
1	2.152250000	5.116184000	0.000000000
1	2.152255000	2.647477000	0.000000000
1	-2.152466000	2.646680000	0.000000000
1	-2.153375000	5.115387000	0.000000000
6	0.000191000	1.056965000	0.000000000
6	0.000367000	-0.159345000	0.000000000

6	0.000399000	-1.515043000	0.000000000
6	0.000431000	-2.731618000	0.000000000
6	0.000431000	-4.151265000	0.000000000
6	1.215263000	-4.864247000	0.000000000
6	-1.214401000	-4.864247000	0.000000000
6	1.208793000	-6.253724000	0.000000000
1	2.151620000	-4.319890000	0.000000000
6	-1.207932000	-6.253724000	0.000000000
1	-2.150759000	-4.319891000	0.000000000
6	0.000431000	-6.951803000	0.000000000
1	2.148348000	-6.793773000	0.000000000
1	-2.147486000	-6.793774000	0.000000000
1	0.000431000	-8.035517000	0.000000000
6	-0.000856000	6.703139000	0.000000000
7	-0.001071000	7.859081000	0.000000000

Optimized LE state geometry of PhMe₂N

6	6.923132000	1.211477000	-0.003567000
6	5.541969000	1.226804000	0.000828000
6	4.795690000	0.000011000	0.000857000

6	5.541976000	-1.226777000	-0.001423000
6	6.923138000	-1.211443000	-0.005863000
6	7.634668000	0.000019000	-0.006934000
1	7.463630000	2.152381000	-0.003827000
1	5.003229000	2.167205000	0.002863000
1	5.003240000	-2.167180000	-0.001162000
1	7.463640000	-2.152344000	-0.007848000
6	3.413219000	0.000008000	0.005238000
6	2.164970000	-0.000006000	0.006407000
6	0.841740000	-0.000009000	0.007525000
6	-0.404938000	-0.000107000	0.007565000
6	-1.787584000	-0.000075000	0.004409000
6	-2.538324000	1.219931000	0.002804000
6	-2.538377000	-1.220047000	0.003917000
6	-3.910899000	1.219115000	-0.002567000
1	-2.004207000	2.161986000	0.005672000
6	-3.910953000	-1.219168000	-0.001562000
1	-2.004302000	-2.162125000	0.007627000
6	-4.652634000	-0.000009000	-0.007483000

1	-4.429142000	2.167445000	-0.000798000
1	-4.429232000	-2.167475000	0.000864000
7	-6.016616000	0.000041000	-0.020332000
6	-6.760184000	-1.255995000	0.004446000
1	-6.551573000	-1.825900000	0.916858000
1	-7.824419000	-1.037782000	-0.029784000
1	-6.508212000	-1.881038000	-0.858471000
6	-6.760062000	1.256147000	0.002281000
1	-6.507021000	1.880178000	-0.862071000
1	-7.824318000	1.038041000	-0.032948000
1	-6.552391000	1.827020000	0.914301000
1	8.718111000	0.000022000	-0.010226000

Optimized LE state geometry of Me₂NCN

6	-6.095334000	-1.215744000	-0.000416000
6	-4.711119000	-1.214832000	-0.000408000
6	-3.994196000	-0.000009000	0.000016000
6	-4.711066000	1.214841000	0.000432000
6	-6.095279000	1.215809000	0.000425000
6	-6.798442000	0.000047000	0.000001000

1	-6.637580000	-2.152750000	-0.000743000
1	-4.170556000	-2.152610000	-0.000730000
1	-4.170462000	2.152595000	0.000760000
1	-6.637488000	2.152837000	0.000746000
6	-2.578480000	-0.000041000	0.000024000
6	-1.360168000	-0.000105000	0.000031000
6	-0.006859000	-0.000120000	0.000038000
6	1.213407000	-0.000277000	0.000039000
6	2.623901000	-0.000164000	-0.000017000
6	3.356490000	-1.206782000	0.000210000
6	3.356317000	1.206555000	-0.000242000
6	4.736961000	-1.212362000	0.000157000
1	2.822815000	-2.150010000	0.000432000
6	4.736785000	1.212326000	-0.000298000
1	2.822504000	2.149705000	-0.000324000
6	5.477411000	0.000033000	-0.000209000
1	5.250614000	-2.163117000	0.000338000
1	5.250307000	2.163150000	-0.000409000
7	6.843667000	0.000120000	-0.000455000

6	7.581518000	1.258137000	-0.000143000
1	7.356497000	1.858799000	0.887972000
1	8.647504000	1.043602000	-0.001009000
1	7.355314000	1.859751000	-0.887274000
6	7.581670000	-1.257805000	0.000559000
1	7.355752000	-1.859843000	-0.886367000
1	8.647632000	-1.043151000	-0.000140000
1	7.356489000	-1.858097000	0.888875000
6	-8.226314000	0.000080000	-0.000007000
7	-9.382605000	0.000113000	-0.000014000

Cartesian co-ordinates of the optimized ICT state geometry of the fluorophores in acetonitrile (B3LYP/6-311G(d,p))

Optimized ICT state geometry of PhOMe

6	-4.630551000	0.943075000	-0.000315000
6	-3.351198000	1.451436000	-0.000506000
6	-2.204956000	0.606569000	-0.000292000
6	-2.428918000	-0.808314000	0.000056000
6	-3.695683000	-1.325194000	0.000177000
6	-4.817212000	-0.456768000	0.000105000

1	-5.477841000	1.613466000	-0.000487000
1	-3.193050000	2.522670000	-0.000828000
1	-1.569205000	-1.467049000	0.000151000
1	-3.877329000	-2.392774000	0.000440000
6	-0.914546000	1.169205000	-0.000500000
6	0.303714000	0.719476000	-0.000405000
6	1.591582000	0.530346000	-0.000124000
6	2.826217000	0.284229000	-0.000079000
6	4.190921000	0.046273000	0.000011000
6	4.918852000	-0.080149000	1.221825000
6	4.918820000	-0.081280000	-1.221689000
6	6.283295000	-0.315796000	1.205619000
1	4.390925000	0.011858000	2.163166000
6	6.283267000	-0.316927000	-1.205299000
1	4.390877000	0.009845000	-2.163106000
6	6.984662000	-0.437215000	0.000204000
1	6.811336000	-0.406464000	2.149101000
1	6.811283000	-0.408469000	-2.148709000
8	-6.004643000	-1.058599000	0.000424000

6	-7.214664000	-0.275499000	0.000428000
1	-7.270391000	0.343380000	-0.896749000
1	-8.022999000	-1.001216000	0.000881000
1	-7.269978000	0.344045000	0.897169000
1	8.051913000	-0.621311000	0.000276000

Optimized ICT state geometry of PhCN

6	4.559262000	-1.112359000	-0.502660000
6	3.188669000	-1.122266000	-0.506648000
6	2.442918000	-0.000008000	-0.000040000
6	3.188629000	1.122258000	0.506605000
6	4.559222000	1.112370000	0.502686000
6	5.288002000	0.000010000	0.000031000
1	5.098298000	-1.969294000	-0.889565000
1	2.653889000	-1.980110000	-0.893837000
1	2.653818000	1.980096000	0.893769000
1	5.098228000	1.969311000	0.889617000
6	1.071603000	-0.000018000	-0.000074000
6	-0.187774000	-0.000031000	-0.000104000
6	-1.496384000	-0.000017000	-0.000131000

6	-2.750401000	0.000005000	-0.000187000	
6	-4.137151000	0.000007000	-0.000071000	
6	-4.862713000	-0.508654000	1.118672000	
6	-4.862901000	0.508662000	-1.118693000	
6	-6.242485000	-0.505841000	1.110552000	
1	-4.310212000	-0.893310000	1.965968000	
6	-6.242672000	0.505838000	-1.110345000	
1	-4.310542000	0.893320000	-1.966082000	
6	-6.933067000	-0.000004000	0.000161000	
1	-6.793181000	-0.892100000	1.958843000	
1	-6.793512000	0.892091000	-1.958546000	
1	-8.016413000	-0.000008000	0.000250000	
6	6.698450000	0.000019000	0.000066000	
7	7.861769000	0.000027000	0.000095000	
Optimized ICT state geometry of PhMe₂N				

6	-6.687093000	0.428596000	1.205513000
6	-5.333874000	0.137161000	1.221211000
6	-4.606803000	-0.021117000	0.000185000
6	-5.333976000	0.136002000	-1.220910000

6	-6.687192000	0.427470000	-1.205365000
6	-7.385210000	0.578339000	0.000030000
1	-7.210682000	0.541719000	2.149406000
1	-4.810908000	0.024601000	2.163495000
1	-4.811096000	0.022545000	-2.163132000
1	-7.210860000	0.539709000	-2.149318000
6	-3.252441000	-0.314547000	0.000306000
6	-2.030781000	-0.601307000	0.000438000
6	-0.743806000	-0.843268000	0.000470000
6	0.455261000	-1.310987000	0.000513000
6	1.775047000	-0.815761000	0.000031000
6	2.887349000	-1.706437000	0.000044000
6	2.071920000	0.583321000	-0.000502000
6	4.180772000	-1.256746000	-0.000418000
1	2.686731000	-2.770889000	0.000383000
6	3.356657000	1.051583000	-0.000968000
1	1.244964000	1.283260000	-0.000428000
6	4.466142000	0.145382000	-0.000938000
1	4.988619000	-1.973396000	-0.000550000

1	3.530209000	2.117806000	-0.001181000
7	5.736568000	0.599125000	-0.001397000
6	6.036189000	2.034834000	-0.003072000
1	5.628564000	2.519092000	0.887176000
1	7.114669000	2.157962000	0.010311000
1	5.606550000	2.512510000	-0.886440000
6	6.852024000	-0.353234000	-0.000214000
1	6.807329000	-0.992862000	-0.884643000
1	7.780667000	0.208806000	0.017468000
1	6.822121000	-0.986823000	0.889132000
1	-8.443973000	0.806380000	-0.000038000

Optimized ICT state geometry of Me₂NCN

6	6.097852000	-0.049978000	1.215252000
6	4.712794000	-0.050084000	1.212906000
6	3.998177000	-0.000564000	-0.000538000
6	4.713805000	0.049394000	-1.213364000
6	6.098866000	0.050126000	-1.214519000
6	6.799576000	0.000294000	0.000668000
1	6.640429000	-0.088044000	2.151174000

1	4.170830000	-0.088294000	2.149056000
1	4.172624000	0.087296000	-2.149981000
1	6.642224000	0.088555000	-2.149973000
6	2.578584000	-0.000780000	-0.001109000
6	1.361336000	-0.000818000	-0.001455000
6	0.005519000	-0.000730000	-0.001709000
6	-1.213736000	-0.000585000	-0.001640000
6	-2.627431000	-0.000337000	-0.001328000
6	-3.358877000	1.204824000	0.038327000
6	-3.359360000	-1.205236000	-0.039984000
6	-4.740394000	1.210820000	0.039602000
1	-2.825437000	2.147706000	0.069673000
6	-4.740880000	-1.210729000	-0.039622000
1	-2.826304000	-2.148317000	-0.071880000
6	-5.481245000	0.000182000	0.000396000
1	-5.252826000	2.161659000	0.073712000
1	-5.253703000	-2.161387000	-0.072937000
7	-6.848872000	0.000435000	0.001220000
6	-7.586707000	-1.256795000	-0.018344000

1	-7.325349000	-1.913983000	0.841873000
1	-8.652185000	-1.042581000	0.020006000
1	-7.387796000	-1.831373000	-0.930142000
6	-7.586218000	1.257958000	0.020680000
1	-7.325062000	1.914737000	-0.839916000
1	-8.651797000	1.044134000	-0.017007000
1	-7.386612000	1.832787000	0.932161000
6	8.228714000	0.000746000	0.001289000
7	9.400114000	0.001116000	0.001799000

Optimized ICT state geometry of PhMe₂N using CAM-B3LYP/6-311G(d,p)

6	6.643623000	0.535583000	-1.155694000
6	5.294914000	0.232693000	-1.188372000
6	4.586842000	-0.016486000	0.009340000
6	5.302371000	0.037190000	1.226784000
6	6.649255000	0.344197000	1.235689000
6	7.337421000	0.590390000	0.049973000
1	7.164726000	0.726998000	-2.086239000
1	4.767426000	0.190169000	-2.133112000
1	4.780820000	-0.161035000	2.155267000

1	7.174393000	0.383419000	2.183767000
6	3.223199000	-0.319964000	-0.014355000
6	2.005534000	-0.606383000	-0.038686000
6	0.727624000	-0.844472000	-0.084468000
6	-0.466834000	-1.362289000	-0.104176000
6	-1.770173000	-0.851228000	-0.078158000
6	-2.891306000	-1.721903000	-0.063167000
6	-2.044787000	0.545955000	-0.064448000
6	-4.172327000	-1.255273000	-0.020108000
1	-2.707105000	-2.789780000	-0.079764000
6	-3.316393000	1.032275000	-0.027990000
1	-1.206402000	1.232110000	-0.084327000
6	-4.433664000	0.144789000	0.015736000
1	-4.992233000	-1.959242000	-0.007637000
1	-3.474528000	2.101216000	-0.022907000
7	-5.689471000	0.616800000	0.078999000
6	-5.947441000	2.053048000	0.065816000
1	-5.594582000	2.507494000	-0.863843000
1	-7.018283000	2.217004000	0.138829000

1	-5.473461000	2.539460000	0.920475000
6	-6.827030000	-0.296770000	0.074921000
1	-6.777359000	-0.988936000	0.916385000
1	-7.741707000	0.282515000	0.164125000
1	-6.873612000	-0.871864000	-0.853469000
1	8.393246000	0.824768000	0.067624000

Reference:

1. A. K. Pati, M. Mohapatra, P. Ghosh, S. J. Gharpure and A. K. Mishra, *J. Phys. Chem. A* **2013**, *117*, 6548-6560.