Dynamic nuclear polarisation enhanced ¹⁴N overtone MAS NMR spectroscopy: Supporting information

Aaron J. Rossini,^a Lyndon Emsley^a and Luke A. O'Dell^{b*},

^aCentre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France

^bInstitute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3220,

Australia

*Corresponding author: luke.odell@deakin.edu.au

- S1. ¹⁴N NMR parameters used in the simulations
- S2. Glycine ¹³C CP DNP enhancement
- S3. Glycine $^{14}N^{\text{OT}}$ CP on resonance with +2 ω_r and + ω_r overtone sidebands
- S4. Glycylglycine ¹³C CP DNP enhancement
- S5. Simulations modelling the effect of the contact time on the $^{14}\mathrm{N}^{\mathrm{OT}}$ powder pattern
- S6. Histidine.HCl.H₂O ¹³C CP DNP enhancement
- S7. Quantification of ¹³C-¹⁴N^{OT} HMQC coherence transfer efficiency
- S8. Comparison of $^{\rm 14}\rm N^{OT}$ and $^{\rm 15}\rm N$ sensitivities

S1. ¹⁴N NMR parameters used in the simulations

Sample	Site	C _Q / MHz	η Q	δ _{iso} (¹⁵ N) / ppm		
Glycine	N1	1.18	0.53	-6		
Glycylglycine	N1	1.40	0.10	-12		
	N2	3.29	0.45	79		
Histidine.HCl.H ₂ O	N1	1.25	0.35	8		
	N2	1.52	0.25	138		
	N3	1.21	0.94	152		

Table S1 – NMR parameters used to simulate the ¹⁴N^{OT} MAS spectra of the various sites for the three samples studied. The isotropic chemical shifts δ_{iso} , which determine the position of the ¹⁴N^{OT} powder patterns, were measured from the ¹⁵N CPMAS spectra and were fixed in the ¹⁴N^{OT} simulations. The quadrupolar parameters C_Q and η_Q , which determine the shape and width of the powder patterns, were adjusted to match the simulated spectra to the experimental ¹⁴N^{OT} data, using values calculated from density functional theory as initial guesses.

S2. Glycine ¹H and ¹³C CP DNP enhancement

Figure S2 $-^{13}$ C CPMAS NMR spectra obtained from a solid powder sample of glycine impregnated with a solution of TEKPol in tetrachloroethane, with and without 70 mA microwave irradiation applied. The spectra were obtained at 9.4 T, 107 K and 10 kHz MAS (4 scans with 10 s recycle delay and 2 ms cross-polarisation contact time). Asterisks denote spinning sidebands. The 13 C signal from the TCE is visible at 74 ppm.

S3. Glycine ¹⁴N^{OT} CP on resonance with $+2\omega_r$ and $+\omega_r$ overtone sidebands

Figure S3 – DNP-enhanced ¹⁴N^{OT} CPMAS spectra obtained from a solid powder sample of glycine impregnated with a solution of TEKPol in tetrachloroethane, at 9.4 T and 107 K. Both spectra were obtained at 10 kHz MAS with a CP contact time of 125 μ s, 16 scans and a recycle delay of 40 s. In spectrum (a) the ¹⁴N^{OT} transmitter frequency was placed on resonance with the +2 ω _r overtone sideband as shown. In (b) this frequency was adjusted by –10 kHz, but no + ω _r overtone sideband was observed.

S4. Glycylglycine ¹³C CP DNP enhancement

Figure S4 – ¹³C CPMAS NMR spectra obtained from a solid powder sample of glycylglycine impregnated with a solution of TEKPol in tetrachloroethane, with and without 70 mA microwave irradiation applied. The spectra were obtained at 9.4 T, 107 K and 10 kHz MAS (4 scans with 10 s recycle delay and 2 ms cross-polarisation contact time for ¹³C). Asterisks denote spinning sidebands, and the ¹³C signal from the TCE is visible in at 74 ppm.

S5. Simulations modelling the effect of the contact time on the ¹⁴N^{OT} powder pattern

Figure S5 – (a) ¹⁴N^{OT} spectrum obtained from glycylglycine at 107 K, 9.4 T and 10 kHz MAS using DNP-enhanced cross-polarisation from the ¹H nuclei, with a CP contact time of 125 μ s and the ¹⁴N^{OT} contact pulse applied on resonance with the N1 peak at 30 kHz. 20 scans were acquired with a recycle delay of 40 s. Simulations made using pulse lengths of (b) 0.1 μ s and (c) 125 μ s are also shown to model the effects of the contact time on the powder pattern shape.

S6. Histidine.HCl.H₂O ¹³C CP DNP enhancement

Figure S6 – ¹³C CPMAS NMR spectra obtained from a solid powder sample of histidine.HCl.H₂O impregnated with a solution of TEKPol in tetrachloroethane, with and without 70 mA microwave irradiation applied. The spectra were obtained at 9.4 T, 107 K and 10 kHz MAS (4 scans with 10 s recycle delay and 2 ms cross-polarisation contact time for ¹³C). Asterisks denote spinning sidebands, and the ¹³C signal from the TCE is visible in at 74 ppm.

S7. Efficiency of ¹³C-¹⁴N^{OT} HMQC filters

Figure S7 – Comparison of DNP enhanced ${}^{1}H{}^{-13}C$ CP spin echo spectrum (16 scans) and ${}^{1}H{}^{-13}C$ CP HMQC ${}^{14}N^{OT}$ filtered spectrum (32 scans) acquired with a 200 µs ${}^{14}N^{OT}$ 90° pulse applied on resonance with the amide (-NH) nitrogen for coherence transfer. In both cases the total ${}^{13}C$ transverse magnetization evolution time was 15 ms. The efficiency of the ${}^{14}NOT$ HMQC filter is 2.8%. In both cases a 10 s recycle delay was employed.

S8. Comparison of ¹⁴N^{OT} and ¹⁵N sensitivities

Sample		Number of scans		Experiment time / min		Line width / Hz		S/N		ε _{с ср}	
	Site	¹⁴ N ^{OT}	¹⁵ N	¹⁴ N ^{ot}	¹⁵ N	¹⁴ N ^{OT}	¹⁵ N	¹⁴ N ^{ot}	¹⁵ N	¹⁴ N ^{OT}	¹⁵ N
Glycine	N1	16	8	11	8	1500	34	34	291	82	80
Glycylglycine	N1	32	8	32	8	3000	36	33	140	123	84
	N2	32		32		8500	34	13	153		
Histidine.HCl.H ₂ O	N1		8	64	8	2000	35	19	78	225	72
	N2	64				4000	28	15	98		
	N3					1500	50	25	60		

Table S2 – Comparison of factors contributing to ¹⁴N^{OT} and ¹⁵N sensitivities in the directly-observed, DNP-enhanced spectra acquired in this work. Other experimental details can be found in the main article. All spectra were acquired at 9.4 T and a temperature of around 107 K.