Supplementary Information for:

Intermolecular Network Analysis of the Liquid and Vapor Interfaces of Pentane and Water: Microsolvation Does Not Trend with Interfacial Properties

Yasaman Ghadar, Aurora E. Clark*

¹Department of Chemistry, Washington State University, Pullman, WA 99164

*Authors to whom correspondence should be addressed: <u>auclark@wsu.edu</u>

				6		-		
Туре	r_{θ} (Å)	Туре	θ ₀ (°)	$m{k}_{ heta}$	Туре	k_1	k_2	<i>k</i> ₃
				(kcal/mol/rad) ²		(kcal/mol)	(kcal/mol)	(kcal/mol)
O-H	0.9572	C-C-	112.7	58.35	H-C-	0.0	0.0	0.3
		С			C-H			
C-C	1.529	H-C-	107.8	33.00	H-C-	0.0	0.0	0.3
		Н			C-C			
C-H	1.090	C-C-	110.7	37.50	C-C-	1.3	-0.05	0.2
		Н			C-C			
		H-O-	104.52	55.0				
		Н						

Table S1. Bonded potential parameters for C₅H₁₂ and H₂O.^{a-c}

^{a)}Form of the bonded potential: $u = k(r - r_0)^2$

^{b)}Form of the angular potential: $u = k_{\theta}(\theta - \theta_0)^2$

^{c)}Form of the torsional potential: $u = \frac{1}{2}k_1(1 + \cos \phi) + \frac{1}{2}k_2(1 - \cos 2\phi) + \frac{1}{2}k_3(1 + \cos 3\phi)$

	C	${}_{5}H_{12}$	
Atom	σ(Å)	€ (kcal/mol)	q
Н	2.4	0.015	0.06
C1(methyl)	3.75	0.097	-0.18
C2(methylene)	3.75	0.0665	-0.12
C3(tertiary)	3.75	0.032	-0.06
C4(quaternary)	3.75	0.003	0.00
	H	I ₂ O	
Atom	σ(Å)	€ (kcal/mol)	q
Н	0.0	0.0	0.415
0	3.188	0.102	-0.830
Using the form $u = 4\varepsilon [$	$\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6}$		
~	~		

^{b)}Mixing rules
$$\sigma_{ij} = \frac{\sigma_i + \sigma_j}{2}, \epsilon_{ij} = \sqrt{\epsilon_i \times \epsilon_j}$$

System	Z _{water} (Å)	Z _{alkane} (Å)
Water:Vapor@273 K	±28.55	
Water:Vapor@298K	±37.00	
Water:Neopentane@273K	±37.73	± 36.05
Water:n-Pentane@273K	±31.03	±32.15
Water:Neopentane@298K	±38.27	±37.14
Water:n-Pentane@298K	±33.73	±31.73
n-Pentane:Vapor@298K		±32.97
Neopentane:Vapor@273K		±31.48

Table S3. Gibbs dividing surface position for water and alkane in different
 systems in Å.

Table S4. Density in g/cm³ and diffusion coefficient, D, in cm²/sec for H_2O and C_5H_{12} at different temperatures.

Liquid bulk T(K)	ρ(g/cm ³)	D×(10 ⁻⁵ cm ² /sec)
H ₂ O(TIP3P/Ew) @ 273K	0.99	1.16
H ₂ O(TIP3P/Ew) @ 298K	1.04	4.16
<i>n</i> -Pentane @ 298K	0.63	5.60
Neopentane @ 273K	0.63	3.30

Table S5. Hydrogen bond distribution and its statistical error for bulk water as well as vapor and organic interfaces for both 273 and 298K.

System	1H-Bond	2H-Bond	3H-bond	4H-Bond	5H-Bond
Water at 273K	1.92 ± 0.01	12.23±0.04	36.44±0.6	47.04±0.12	2.35±0.01
Water at 298K	3.95 ± 0.02	18.40 ± 0.05	39.47±0.01	36.05±0.09	2.10 ± 0.01
Water:Vapor at 273K	27.23±0.37	28.43 ± 0.24	28.33±0.20	15.26 ± 0.07	0.73 ± 0.00
Water:Vapor at 298K	40.29±0.39	31.39±0.26	20.50±0.34	7.33±0.06	0.46 ± 0.14
Water:Neopentane at 273K	23.028±2.06	26.28 ± 0.54	30.83 ± 1.07	17.89 ± 1.44	0.96 ± 0.09
Water:Pentane at 298K	29.69±2.73	29.42 ± 0.45	26.90±1.53	13.29±1.51	0.68±0.13

$\Delta r_{0,\dots,0}(\text{\AA})$	% Occurrence at the interface	% Occurrence at bulk
0.000.05	27.92	24.80
0.050.10	22.66	20.82
0.100.15	16.99	16.12
0.150.20	11.26	11.14
0.200.25	6.75	7.22
0.250.30	3.90	4.69
0.300.35	2.36	3.16
0.350.40	1.55	2.30
0.400.45	1.14	1.77
0.450.50	0.90	1.41
0.500.55	4.55	6.53

Table S6. Cross correlation of each instance of hydrogen bond breakage and formation with the change in O..O distance in H₂O:vapor at 298K.

Table S7. Liquid density (ρ_L) and vapor density (ρ_V) of C₅H₁₂:vapor and H₂O:vapor interfaces studies in g/cm³.

Liquid-Vapor/ T(K)	$ ho_L$ (g/cm ³)	\mathcal{P}_V (g/cm ³)
TIP3P/Ew: vapor@273	0.963	0.022
TIP3P/Ew : vapor@298	0.998	0.015
Neopentane : vapor@273	0.492	0.005
n-Pentane : vapor@ 298	0.560	0.009

Table S8. Complete list of surface tensions and interfacial widths for all vapor systems using all fitting methods.

Liquid-Vapor/ T(K)	γp	Ye	γ_t	Wt	We	Δ_{t}	$\Delta_{\mathbf{e}}$	Δ_t^2	Δ_e^2
TIP3P/Ew: vapor 273K	64.81	63.17	63.76	2.65	2.81	1.20	1.12	1.44	1.26
TIP3P/Ew : vapor 298K	45.67	44.28	73.57	2.66	3.1	1.21	1.24	1.46	1.53
Neopentane : vapor 273K	16.59	22.9	23.59	5.50	5.97	2.49	2.38	6.22	5.67
n-Pentane : vapor 298K	20.35	19.6	23.23	8.79	3.02	3.99	1.21	15.89	1.45

Table S9. Diffusion coefficients in $(10^{-5} \text{cm}^2/\text{sec})$ and liquid density densities of $H_2O:C_5H_{12}$ in this work in g/cm³.

Liquid:Liquid/ T(K)	D×(10 ⁻⁵ cm ² /sec)	$\rho_{water}(g/cm^3)$	$\rho_{alkane}(g/cm^3)$
TIP3P/Ew:n-Pentane@ 298K	3.1:5.8	1.0	0.623
TIP3P/Ew:Neopentane @273 K	1.8:3.0	1.03	0.629

Table S10. Cross correlation of each instance of hydrogen bond breakage and formation with the change in O..O distance in H_2O :pentane at 298K.

$\Delta r_{00}(\text{\AA})$	% Occurrence at the	$\Delta r_{00}(\text{\AA})$	% Occurrence
	interface		at bulk
0.000.05	27.182276	0.000.05	24.150045
0.050.10	22.051653	0.050.10	20.775272
0.100.15	17.086611	0.100.15	16.384352
0.150.20	11.656017	0.150.20	11.663977
0.200.25	7.2889738	0.200.25	7.808403
0.250.30	4.3214912	0.250.30	5.0737596
0.300.35	2.6190484	0.300.35	3.385426
0.350.40	1.6891139	0.350.40	2.4102104
0.400.45	1.2073233	0.400.45	1.8390678
0.450.50	0.91524667	0.450.50	1.4396348
0.500.55	3.9822452	0.500.55	5.0698533

Figure S1. Order parameter, S_z , as a function of θ in degrees, defined by the three vectors of *n*-pentane.

Figure S2. Geometric criterion that defines a hydrogen bond.

Figure S3. (A) Definition of dipole moment orientation of H₂O with respect to a solute. (B) The special case where the solute is a water molecule (reference H₂O). For the water molecule donating a H-bond to the reference H₂O, the angle is called alpha (α) wherein a value of 180° indicates alignment of the dipole moment vector along the axis of the hydrogen bond. For a water molecule accepting a H-bond from the reference H₂O, the angle is referred to as (β) wherein a value of 0° indicates perfect alignment of the dipole moment vector along the H-bond.

Figure S5. Radial distribution functions between C-atoms in n-pentane at 298K. Labeling of atomic centers is C_1 - C_2 - C_3 - C_4 - C_5 .

Figure S6. Radial distribution functions between central C-atoms in neopentane at 298K.⁷

Figure S8. Density profiles of (A) water:*n*-pentane at 298 K, and (B) water:neopentane at 2173 K.

Figure S9. A) Potential of mean force for water migration across the water:pentane or water:vapor interfaces and b) pentane traveling across the water:pentane and pentane:vapor interfaces in kcal/mol.

Figure S10. Distributions of (A) the number of neopentane molecules that solvate individual H₂O, and (B) the number of water molecules that solvate individual neopentane at 273 K and 298 K.

