Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supporting Information

Modification of the surface chemistry of single- and multi-walled carbon nanotubes by HNO₃ and H₂SO₄ hydrothermal oxidation for application in

direct contact membrane distillation

Sergio Morales-Torres, Tânia L.S. Silva, Luisa M. Pastrana-Martínez, Ana T.S.C. Brandão,

José L. Figueiredo, Adrián M.T. Silva*

LCM - Laboratory of Catalysis and Materials - Associate Laboratory LSRE/LCM, Faculdade

de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

*Corresponding author e-mail address: adrian@fe.up.pt (A.M.T. Silva)

Table S1. Results obtained from the deconvolution of CO₂ TPD spectra for the CNTs treated with different oxidizing agents at 0.30 mol L⁻¹. T_M , W and A correspond to the temperature, half-height and area of the peak, respectively. $P_{\#x}$ is the percentage of the area of the peak #x with respect to the total area of the spectrum.

	Peak #1					Peak #2				Peak #3				Peak #4			
Sample	T_M	W	A	<i>P</i> _{#1}	T_M	W	A	<i>P</i> _{#2}	$P_{\#_{l+2}}$	T_M	W	A	<i>P</i> _{#3}	T_M	W	A	<i>P</i> _{#4}
	(K)	(K)	$(\mu mol g^{-1})$	(%)	(K)	(K)	$(\mu mol g^{-1})$	(%)	(%)	(K)	(K)	$(\mu mol g^{-1})$	(%)	(K)	(K)	$(\mu mol g^{-1})$	(%)
MW-HN-0.30	536	94	443	36	644	100	206	17	53	762	138	214	18	920	138	354	29
MW-HS-0.30	542	95	148	31	630	78	65	14	45	738	170	130	28	942	170	128	27
SW/S-HN-0.30	529	99	300	42	656	107	147	20	62	797	127	102	14	933	127	177	24
SW/S-HS-0.30	534	147	150	43	656	80	25	7	50	766	162	73	21	950	162	99	29
SW/L-HN-0.30	532	115	238	40	650	101	77	13	53	753	156	105	17	926	156	180	30
SW/L-HS-0.30	547	124	159	41	665	78	36	9	50	762	143	84	22	961	143	106	28

Table S2. Results obtained from the deconvolution of CO TPD spectra for the CNTs treated with different oxidizing agents at 0.30 mol L⁻¹. T_{M_2} , W and A correspond to the temperature, half-height and area of the peak, respectively. $P_{\#_X}$ is the percentage of the area of the peak $\#_X$ with respect to the total area of the spectrum.

		Pe	eak #1 & #2		Peak #3						Peak #4		Peak #5 & #6			
Sample	T_M	W	A	$P_{\#_{1}+\#_{2}}$	T_M	W	A	<i>P</i> _{#3}	T_M	W	A	$P_{\#4}$	T_M	W	A	P#5+6
	(K)	(K)	$(\mu mol g^{-1})$	(%)	(K)	(K)	$(\mu mol g^{-1})$	(%)	(K)	(K)	$(\mu mol g^{-1})$	(%)	(K)	(K)	(µmol g ⁻¹)	(%)
MW-HN-0.30	536	94	23	1	762	138	214	6	987	161	2927	88	1146	161	157	5
	644	100	15													
MW-HS-0.30	542	95	22	2	738	170	130	10	936	189	614	47	1099	189	532	41
	630	78	13													
SW/S-HN-0.30	529	99	28	4	797	127	102	4	991	142	1878	74	1178	142	291	18
	656	107	72										1370	179	158	
SW/S-HS-0.30	534	147	6.5	3	766	162	73	6	984	218	860	76	1177	218	169	15
	656	80	25													
SW/L-HN-0.30	532	115	46	4	753	156	105	7	978	175	1000	62	1116	175	372	27
	650	101	13										1356	119	66	
SW/L-HS-0.30	547	124	7.3	7	762	143	84	10	959	148	488	56	1129	148	237	27
	665	78	51													

Figure S1. Nitrogen adsorption-desorption isotherms at 77 K for (a, b) MW and (c, d) SW/S treated with different (a, c) H_2SO_4 or (b, d) HNO₃ concentrations.

Figure S2. Nitrogen adsorption-desorption isotherms at 77 K for pristine SW/L and treated with H_2SO_4 or HNO_3 at 0.30 mol L⁻¹ concentration.

Figure S3. Pore size distributions for (a) pristine MW, (b) pristine SW/S and (c) pristine SW/L and, respectively, for samples treated with H_2SO_4 or HNO_3 at 0.30 mol L⁻¹. PSDs obtained by (a) BJH or (b, c) QSDFT methods.