Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Hansen et al.LiBH4-MgH2-Al CompositesPhys. Chem. Chem. Phys., 2014, Submitted

Supplementary Informations

Hydrogen reversibility of LiBH₄-MgH₂-Al Composites

Bjarne R. S. Hansen¹, Dorthe B. Ravnsbæk^{1,2}, Jørgen Skibsted³, Torben R. Jensen^{1*}

¹Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

² Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, United States of America

³ Instrument Centre for Solid-State NMR Spectroscopy, Department of Chemistry, and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

* Corresponding author: Torben R. Jensen (trj@chem.au.dk)

Rietveld refinement

Rietveld refinement is performed on selected PXD patterns from in situ SR-PXD measurements and presented below in Figure S1 and S2. The extracted data is presented in Table 2.

Figure S1. Rietveld refinement profile (Y_{calc} , upper black line) of SR-PXD data (observed data Y_{obs} , red) for LiBH₄-MgH₂-Al (4:1:5, S2) measured at *RT before desorption* ($\lambda = 1.10205$ Å). This data is shown in Figure 2. Ticks: Al (upper, blue), o-LiBH₄ (middle, red) and MgH₂ (lower, green). The difference profile $(Y_{obs} - Y_{calc})$ is shown as the lower (blue) curve. Reliability factors, R_{Bragg} , are $R_{\text{Bragg}}(o-\text{LiBH}_4) = 6.37, R_{\text{Bragg}}(\text{Al}) = 0.167 \text{ and } R_{\text{Bragg}}(\text{MgH}_2) = 1.44.$

LiBH4-MgH2-Al (4:1:5) absorption scan256, dd = 80

Figure S2. Rietveld refinement profile (Y_{calc} , upper black line) of SR-PXD data (observed data Y_{obs} , red) for LiBH₄-MgH₂-Al (4:1:5, **S2**) measured at *RT after absorption* ($\lambda = 1.10205$ Å). This data is shown in Figure 5. Ticks: Al (upper, blue), *o*-LiBH₄ (middle, red) and MgH₂ (lower, green). The difference profile ($Y_{obs} - Y_{calc}$) is shown as the lower (blue) curve. Reliability factors, R_{Bragg} , are $R_{Bragg}(o\text{-LiBH}_4) = 26.1$, $R_{Bragg}(Al) = 0.514$ and $R_{Bragg}(MgH_2) = 4.54$.

Space group	a (Å) b (Å)		<i>c</i> (Å)	Reference
Pnma	7.179	4.437	6.803	1
P63mc	4.276		6.948	1
Fm-3m	4.083			2
Fm-3m	4.049			3
Im-3m	3.517			4
<i>I4-3m</i>	10.5438			5
P63/mmc	3.2094		5.2103	6
P63/mmc	3.1692		5.1581	7
P6/mmm	3.047		3.366	8
Fm-3m	4.217			9
Fd-3m	6.376			10
<i>P</i> 6- <i>m</i> 2	2.907		2.837	11
	Space group Pnma P63mc Fm-3m Fm-3m Im-3m I4-3m P63/mmc P63/mmc P63/mmc Fm-3m Fm-3m P63/mmc P63/mmc P6-m2	Space group a (Å) Pnma 7.179 P63mc 4.276 Fm-3m 4.083 Fm-3m 4.049 Im-3m 3.517 I4-3m 10.5438 P63/mmc 3.2094 P63/mmc 3.1692 P6/mmm 3.047 Fm-3m 4.217 Fd-3m 6.376 P6-m2 2.907	Space groupa (Å)b (Å)Pnma7.1794.437P63mc4.276Fm-3m4.083Fm-3m4.049Im-3m3.517I4-3m10.5438P63/mmc3.2094P63/mmc3.047Fm-3m4.217Fd-3m6.376Fd-m22.907	Space groupa (Å)b (Å)c (Å)Pnma7.1794.4376.803P63mc4.2766.948Fm-3m4.083Fm-3m4.049Im-3m3.517I4-3m10.54385.2103P63/mmc3.20945.2103P63/mmc3.0473.366Fm-3m4.217Fd-3m6.376P6-m22.9072.837

Table S1. Crystallographic data for compounds observed in the LiBH₄–MgH₂–Al system.

Table S2. Reflections observed for unknown compounds denoted 1, 2 and 3

Unknown 1*			Unknown 2**			Unknown 3***		
20	d-spacing	Intensity	20	d-spacing	Intensity	20	d-spacing	Intensity
(\cdot)	(A)	(%)		(A)	(%)	()	(A)	(%)
21.22	4.18	100	21.12	4.20	100	8.91	9.91	88
34.97	2.56	70	35.84	2.50	80	23.51	3.78	100

*Observed in LiBH₄-MgH₂-Al (411, **S1**) absorption, scan 32-38 (T = 275-340 °C) **Observed in LiBH₄-MgH₂-Al (411, **S1**) absorption, scan 125-182 (T = 400-245 °C) *** Observed in *in situ* SR-PXD desorption and absorption of **S2** and in samples of **S1** and **S2** after three hydrogen release and uptake cycles. Data obtained *after* absorption measurement of **S2** at *RT*.

References

- 1. J.-P. Soulié, G. Renaudin, R. Černý, and K. Yvon, J Alloys Comp, 2002, 346, 200-205.
- 2. E. Staritzky, Anal Chem, 1956, 28, 1055.
- 3. E. R. Jette and F. Foote, J Chem Phys, 1935, 3, 605–616.
- 4. F. H. Herbstein and B. L. Averbach, Acta Metall., 1956, 4, 407-413.
- 5. P. Schobinger-Papamantellos and P. Fischer, *Naturwissenschaften*, 1970, **57**, 128–129.
- 6. H. E. Swanson, United States, and National Bureau of Standards, *Standard x-ray diffraction powder patterns*, U.S. Dept. of Commerce, National Bureau of Standards : For sale by the Supt. of Docs., U.S. G.P.O., Washington, DC, 1953.
- 7. R. S. Busk, Trans. Am. Inst. Min. Metall. Pet. Eng., 1950, 1950, 1460–1464.
- 8. N. V. Vekshina, T. K. Voevodskaya, L. Y. Markovskii, and Y. D. Kondrashev, *Zhurnal Prikl. Khimii*, 1971, **1971**, 970–974.
- 9. R. E. Cohen and Z. Gong, *Phys. Rev. B*, 1994, **1994**, 12301–12311.
- 10. E. D. Levine and E. J. Rapperport, Trans Met. Soc AIME, 1963, 227, 1204-1208.
- 11. I. Garaycochea and H. Cid-Dresdner, Acta Cryst, 1961, 14, 200-201.