Supporting information

Improving BiVO₄ photoanodes for solar water splitting through surface passivation

Yongqi Liang, * Johannes Messinger

Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, Umeå, Sweden

*yongqi.liang@chem.umu.se

1. The mirror will only cause a distortion (enriching of the NIR part) of the simulated sunlight spectrum.

Figure S1. The reflection spectrum of the UV-enhanced mirror, which is used for flipping the simulated sunlight. (model PAUV-PM-5010M-C, provided by Melles Griot)

Compared with the AM1.5 sunlight, the actual light hitting $BiVO_4$ is slightly enriched by the NIR photons due to the high reflectance in NIR region for the mirror. The net result is ~10% less photons (wavelength between 300 nm and 600 nm) will be available. Since $BiVO_4$ can not absorb the NIR light (>800nm), a slightly smaller photocurrent for $BiVO_4$ photoelectrodes than that under a real AM1.5 sunlight.

2. Without loading the NiO_x , the characterization of $BiVO_4$ films either in phosphate or in borate electrolyte does not passivate the electrode.

Figure S2. (A) CVs of an as-prepared $BiVO_4$ film electrode in 0.2M NaP*i*. (B) CVs of an the same $BiVO_4$ film electrode in 0.2M NaB*i*. Bothe the dark current and photocurrent under white light illumination are shown.

Figure S2 shows that exposure of $BiVO_4$ to the phosphate electrolyte or borate electrolyte will give very repeatable *low* photocurrent during 4 cycles of electrochemical sweeping between $0.3V_{RHE}$ and $1.8V_{RHE}$. The anomalies in current during the 1st CV cycle are due to the fact that the starting potential is not from the open circuit potential.

3. The BiVO₄ film only absorbs ~90% of the photons of wavelength from 300 nm to 600 nm.

Figure S3. The light absorption spectrum of the BiVO₄ film electrode.

The BiVO₄ film only absorbs ~90% of the photons at the plateau of the UV-vis absorption spectrum. This will cause the measured photocurrent lower than the value if all the photons can be absorbed by the film electrodes.

4. The control experiments demonstrate that the NiO_x films on FTO can be removed in phosphate electrolyte.

Figure S4. (A) CV of blank FTO substrate in NaB_i electrolyte. (B) the CV for loading of NiO_x onto FTO substrate in Ni²⁺ containing NaB_i electrolyte. (C) CV for the removal of NiO_x from FTO substrate in NaP_i electrolyte

From Figure S4, it can be clearly seen that NiO_x can be loaded in borate buffered electrolyte, and can be removed in phosphate containing electrolyte.

Figure S5. (A) XPS spectra of the Bi V for as-prepared BiVO₄ electrode, (B) XPS spectra of Ni, Bi and V for the BiVO₄ film right after NiO_x loading, (C) XPS spectra of Ni, Bi and V for the BiVO₄ film right after treating NiO_x-loaded film in phosphate electrolyte. The spectra are fitted and the composition is quantified and summarized in Table 1 in the main text.

6. The photocurrent from BiVO₄ is not due to the photoetching of BiVO₄

For a BiVO₄ film (100nm thick) working at ~1 mA/cm² for 20min, a rough estimation shows that the electrons pass through will be ~8.1 time the amount of Oxygen from BiVO4. This safely excludes the possibility that the photocurrent (~1.5 mA/cm² for ~1h) shown in the maintext can be due to the photoetching of BiVO₄.

$$\frac{N_{electron}}{N_{oxygen} \times 2} = \frac{\frac{1mA/cm^2 * 1200 \sec onds}{96485}}{\frac{100 * 10^{-7} cm * 6.2g/cm^2}{209 + 50.9 + 64}} = 8.1$$

7. sulfite adding significantly increases the photocurrents by increasing the hole transfer rate, and makes the passivation effect less-observable for $BiVO_4$ photoelectrode

Figure S7. CVs under the AM 1.5 illumination for another BiVO₄ electrode treated at different stages, (black) as-prepared BiVO₄ film, (green) BiVO₄ film after electrochemical loading of NiO_x, and (red) BiVO₄ film after removal of NiO_x OER center. (A) in 0.2M NaB_i (B) in 0.1M NaB_i + 0.05M Na₂SO₃.

After adding sulfite, there is only a minor change after NiO_x loading and no observable change when NiO_x OER center is removed (Figure S7B). It can be clearly seen that sulfite adding significantly increases the photocurrent, which is a result of the increased hole transfer rate. The hole transfer process get so much facilitated for sulfite containing electrolyte that the effect resulted from passivation (after removal of NiO_x OER center) is almost not observable.