Electronic Supplementary Information

Biofuel purification in zeolitic imidazolate frameworks: significant role of functional groups

Kang Zhang, Anjaiah Nalaparaju, Yifei Chen, and Jianwen Jiang^{*} Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore

Fig. S1 Pores along the (111) direction in ZIF-8, -90, -25, -71, -96 and -97. The size is not in the same scale.

Fig. S2 Fragmental clusters of ZIF-8, -90, -25, -71, -96 and -97.

ZIF-8			ZIF-90
Atom	Charge (e)	Atom	Charge (e)
Zn	1.0219	Zn	0.8311
Ν	-0.4973	Ν	-0.2964
C1	0.4958	0	-0.5150
C2	-0.0672	C1	0.5118
C3	-0.2720	C2	0.0844
H1	0.0632	C3	-0.0113
H2	0.1023	H1	-0.0452
		H2	0.0341

ZIF-25		ZIF-71	
Atom	Charge (e)	 Atom	Charge (e)
Zn	1.0678	 Zn	0.9553
Ν	-0.4356	Ν	-0.1611
C1	0.3009	C1	-0.4036
C2	0.1248	C2	0.1322
C3	-0.1216	Cl	-0.1160
H1	-0.0507	 H1	0.2158
H2	0.0134		

ZIF-96				ZIF-97
Atom	Charge (e)		Atom	Charge (e)
Zn1	0.6342		Zn	0.7797
Zn2	0.9203		N1	-0.3800
N1	-0.4847		N2	-0.2654
N2	-0.7835		Ο	-0.6790
N3	-0.5257		C1	-0.0008
N4	-0.3627		C2	0.0700
C1	0.1640		C3	-0.0024
C2	0.5131		C4	-0.1805
C3	-0.1342		C5	0.2866
C4	0.4781		H1	0.1882
H1	0.1706		H2	0.0592
H2	0.2882		H3	0.3927
		•	H4	0.0011

Table S1. Atomic charges of ZIFs.

Atom	σ (Å)	$\varepsilon/k_{\rm B}({\rm K})$
Zn	4.045	27.652
Ν	3.263	38.914
С	3.473	47.813
0	3.033	48.115
Cl	3.519	142.434
Н	2.846	7.642

Table S2. DREIDING force field parameters of ZIF atoms.

Table S3. Potential parameters of ethanol and water.

LJ parameters and charges			hand stratching	hand handing		
	site	$\sigma(\text{\AA})$	$\varepsilon/k_{\rm B}({\rm K})$	charge (e)	bolid stretching	bond bending
EtOH	CH ₃	3.75	98	0	$r_{\text{CH}_3\text{-}\text{CH}_2} = 1.54 \text{ Å}$ $r_{\text{CH}_2\text{-}\text{O}} = 1.43 \text{ Å}$ $r_{\text{O}\text{-}\text{H}} = 0.945 \text{ Å}$	54 Å $\theta^{0}_{\angle CH_{3}-CH_{2}-O} = 109.47^{\circ}$ $k_{\theta}/k_{B} = 50400 \text{ K}$
	CH_2	3.95	46	0.265		
	0	3.02	93	-0.7		$\theta^{\circ}_{\angle \mathrm{CH}_{2}-\mathrm{O-H}} = 108.5^{\circ}$
	Н	0	0	0.435		$k_{\theta}/k_{\rm B} = 55400 \ {\rm K}$
H_2O	Ο	3.151	76.42	-0.834	$r_{\text{O-H}} = 0.96 \text{ Å}$	00 104 500
	Η	0	0	0.417		$\theta_{\perp H-O-H} = 104.52^{\circ}$

Fig. S3 Accessibility in ZIF-96 and ZIF-97. Green and red represent the accessible and inaccessible regions for ethanol, respectively.

Fig. S4 Adsorption isotherms of EtOH in ZIF-25, -71, -96 and -97 based on the number of molecules in simulation box.

Fig. S5 Adsorption isotherms of EtOH in (a) ZIF-8, -25 and -71 (b) ZIF-90, -96 and -97. The solid and dotted lines denote simulation results with and without atomic charges in ZIFs.

Table S4. Antoine equation parameters of ethanol and water.

$\log_{10} P(kPa) = A - \frac{B}{T(K) + C}$					
	Α	В	С		
Ethanol	7.24215	1596.044	-46.655		
Water	7.11572	1684.123	-43.568		

At 298 K, $P_{\text{ethanol}}^{\text{sat}} = 7.80 \text{ kPa}$ and $P_{\text{H}_2\text{O}}^{\text{sat}} = 3.14 \text{ kPa}$. At 308 K, $P_{\text{ethanol}}^{\text{sat}} = 13.65 \text{ kPa}$ and $P_{\text{H}_2\text{O}}^{\text{sat}} = 5.58 \text{ kPa}$.

From Kurihara, K.; Minoura, T.; Takeda, K.; Kojima, K. Isothermal Vapor-Liquid Equilibria for Methanol + Ethanol + Water, Methanol + Water, and Ethanol + Water. *J. Chem. Eng. Data* **1995**, *40*, 679-684.

Fig. S6 (a) Vapor-liquid equilibria (b) fugacities of EtOH/H₂O mixtures at 298 K.

Fig. S7 Adsorption isotherms of EtOH/H₂O mixtures in ZIF-8, -90, -25, -71, -96 and -97 at 298 K.