Ab-initio calculations on ${ }^{1} \mathrm{O}_{2}$ quenching mechanism by trans-resveratrol

Gloria Mazzone, Marta E. Alberto, Nino Russo and Emilia Sicilia

Supplementary Information

- Energy profile computed for the 1,4-cycloaddition mechanism by employing B3LYP exchange and correlation functional, within the CPCM approach. Total free energies are reported in $\mathrm{kcal} / \mathrm{mol}$.
- Energy profile computed for the 1,4-cycloaddition mechanism performing single point calculation at the SCS-RI-MP2 level, within the COSMO approach. Total free energies are reported in $\mathrm{kcal} / \mathrm{mol}$.
- Fully optimized structures of stationary points intercepted along the 1,4-cycloaddition mechanism by employing B3LYP exchange and correlation functional, within the CPCM approach.
- Energy profile computed for the $[\pi 2+\pi 2]$ cycloaddition mechanism by employing B3LYP exchange and correlation functional, within the CPCM approach. Total free energies are reported in $\mathrm{kcal} / \mathrm{mol}$.
- Energy profile computed for the [$\pi 2+\pi 2$] cycloaddition mechanism performing single point calculation at the SCS-RI-MP2 level, within the COSMO approach. Total free energies are reported in $\mathrm{kcal} / \mathrm{mol}$.
- Fully optimized structures of stationary points intercepted along the [$\pi 2+\pi 2]$ cycloaddition mechanism by employing B3LYP exchange and correlation functional, within the CPCM approach.

V

$T S_{V-v I}$

