Supporting Information

Mechanisms of Enhanced Sulfur Tolerance on Samarium (Sm)-doped Cerium Oxide (CeO₂) from First Principles

Dong-Hee Lim^{1),2)}, Hee Su Kim¹⁾, Sung Pil Yoon¹⁾, Jonghee Han¹⁾, Chang Won Yoon¹⁾,

Sun Hee Choi¹⁾, Suk Woo Nam¹⁾, and Hyung Chul Ham^{1),*}

¹⁾ Fuel Cell Research Center, Korea Institute of Science and Technology (KIST),

Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea

²⁾ Department of Environmental Engineering, Chungbuk National University

52 Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk 361-763, Republic of Korea

*Corresponding Author: Hyung Chul Ham

Email: hchahm@kist.re.kr

Phone: +82-2-958-5889, Fax: +82-2-958-5199

1. H₂S decomposition and SO₂ formation pathways

The activation energies for H_2S decomposition and SO_2 formation were determined along the examined pathways as shown in Figure S1 (note that H atoms were not taken into account in the activation energy calculations of SO_2 formation reaction).

Figure S1. Schematic diagrams of H_2S decomposition and SO_2 formation on stoichiometric CeO_2 and Sm-doped CeO_2 .

An overall reaction pathway from H₂S adsorption to SO₂ desorption was examined by calculating total energy change (ΔE) between two adsorbed intermediates; for example, $\Delta E_{\text{H2S*-HS*}} = E_{\text{HS*}} + E_{\text{H*}} - E_{\text{H2S*}} - E_*$, where $\Delta E_{\text{H2S*-HS*}}$ is ΔE between H₂S* and HS*, *E* is the total energy of a surface with adsorbed species, subscripts are adsorbed species, and *E** is the total energy of a clean surface.

Figure S2. The overall reaction pathways of H_2S decomposition and SO_2 formation on stoichiometric CeO₂ (dashed lines) and Sm-doped CeO₂ (solid lines). * and S* (SO*) indicate a clean surface and adsorbed sulfur on lattice oxygen, respectively.

2. Adsorption configurations of S* + H* + H* on stoichiometric CeO₂

Figure S3. Adsorption configurations of $S^* + H^* + H^*$ at hollow sties of stoichiometric CeO₂. (a) and (b) energies indicate relative energies of each configuration compared to the total energy of $S^* + H^* + H^*$ on CeO₂ where sulfur is located at the top site of Ce as shown in Figure 2 Case(I) of the main paper.

3. Adsorption of H₂S, HS, and S species

Table S1. Adsorption energies (E_{ad}) of H₂S, HS, and S species on the stoichiometric CeO₂ and Sm-doped CeO₂ surfaces depending on adsorption sites. H₂S adsorption calculations are performed only at the Ce top sites since the top site has been known the most stable adsorption site for H₂S.¹ Sulfur on the top of dopants is restrained in *x* and *y* directions. Figure (a) and (b) show adsorbed S^{*} on the Ce top of CeO₂^(a) and the Sm–O bridge of Sm-doped CeO₂^(b), respectively. ^(c)Adsorbates strongly interact with the lattice oxygen of the Ce–O bridge site. ^(d)None means that no stable configuration is found.

	CeO ₂			Sm-doped CeO ₂		
	Ce top	Ce–O bridge ^(c)	O top	Sm top	Sm–O bridge ^(c)	O top
H_2S^*	-0.21	-		-0.22	-	
HS^*	-0.67	-1.61		None ^(d)	-2.58	
\mathbf{S}^*	$-0.70^{(a)}$	-2.58	-2.37	-0.88	$-3.26^{(b)}$	-3.19

4. Total and projected density of state

Figure S4. (A) TDOS of Pr-, Pm-, and Eu-doped CeO₂ (dashed lines) and Sm-doped CeO₂ (solid lines). (B) PDOS of surface O 2p states (four O atoms) of Pr-, Pm-, and Eu-doped CeO₂ (dashed lines), O_{Pr}, O_{Pm}, and O_{Eu}, respectively, and surface O 2p state (four O atoms) of Sm-doped CeO₂ (solid lines), O_{Sm}. Spin-up and -down are indicated by positive and negative values. The Fermi energy is referenced at 0 eV.

5. Diffusion of subsurface oxygen onto the surface

Subsurface oxygen atoms tend to diffuse onto the surfaces of stoichiometric CeO₂ and Sm-doped CeO₂ when two surface oxygen atoms are removed during the SO₂ formation and desorption. Sm doping enhances the stabilization of oxygen vacant Sm-doped CeO₂ by allowing a subsurface oxygen atom near Sm to diffuse onto the surface. In Figure S5, the diffusion distances of the first subsurface oxygen atoms marked by an arrow in stoichiometric CeO₂, Sm-doped CeO₂ (A), and Sm-doped CeO₂ (B) are 0.35, 0.44, and 1.07 Å, respectively. Without the surface oxygen vacancies, for example, SO₂* formed surfaces, the diffusion distances of the first

subsurface oxygen atoms on the three surface models are smaller and similar one another (0.24, 0.27, and 0.26 Å for stoichiometric CeO₂, Sm-doped CeO₂ (A), and Sm-doped CeO₂ (B), respectively).

Figure S5. Location of subsurface oxygen atom in two surface oxygen vacant models of stoichiometric CeO_2 (a) and Sm-doped CeO_2 (b and c). (b) and (c) represent Sm-doped CeO_2 (A) and (B) in the main paper Figure 6, respectively.

References

(1) Marrocchelli, D.; Yildiz, B., First-Principles Assessment of H2S and H2O Reaction Mechanisms and the Subsequent Hydrogen Absorption on the CeO2(111) Surface. *Journal of Physical Chemistry C* **2012**, *116*, (3), 2411-2424.