Electronic Supplementary Information

Contents

- 1. Cartesian coordinates, UHCTH/407 energies, and $<S^2>$ values of 1–3 and 9–13.
- 2. DFT calculations of the **D**^{SO} tensors of **1–3**.
- 3. UBP86/cc-pVDZ frontier orbitals of 3.
- 4. Spin configuration-based and orbital region partitioning-based analyses of the **D**^{SO} tensors of **1**,**2**, and **9–12**, as calculated at PK-DFT.

1. Cartesian coordinates, UHCTH/407 energies, and $\langle S^2 \rangle$ values of 1–3 and 9–13.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	7	0	0.00000	0.00000	-1.708049
2	6	0	0.00000	1.170228	-1.016218
3	6	0	0.00000	1.204506	0.412401
4	6	0	0.00000	0.000000	1.183266
5	6	0	0.00000	-1.204506	0.412401
6	6	0	0.00000	-1.170228	-1.016218
7	7	0	0.00000	2.307512	-1.728736
8	9	0	0.00000	2.369597	1.041293
9	7	0	0.00000	0.000000	2.508798
10	9	0	0.00000	-2.369597	1.041293
11	7	0	0.000000	-2.307512	-1.728736

Cartesian coordinates of 1 optimized at the UHCTH/407/6-31G* level.

E(UHCTH/407/6-31G*) = -608.749683960 Hartree

 $\langle S^2 \rangle = 12.0854$

Cartesian coordinates of 2 optimized at the UHCTH/407/6-31G* level.

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Υ	Z	
1			0.000000	0.000000	-1.946777	
2	6	0	0.000000	1.169930	-1.259616	
3	6	0	0.00000	1.220916	0.174854	
4	6	0	0.00000	0.000000	0.931949	
5	6	0	0.00000	-1.220916	0.174854	
6	6	0	0.00000	-1.169930	-1.259616	
7	7	0	0.00000	2.284817	-2.003643	
8	17	0	0.00000	2.722360	0.979948	
9	7	0	0.00000	0.000000	2.255095	
10	17	0	0.00000	-2.722360	0.979948	
11	7	0	0.000000	-2.284817	-2.003643	

 $E(UHCTH/407/6-31G^*) = -1329.63453431$ Hartree $\langle S^2 \rangle = 12.0897$

Cartesian coordinates of 3 optimized at the UHCTH/407/6-31G* level.

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	х	Y	Z
1	7	0	0.00000	0.000000	2.259905
2	6	0	0.00000	1.169681	1.571121
3	6	0	0.00000	1.218211	0.139351
4	6	0	0.00000	0.000000	-0.616619
5	6	0	0.00000	-1.218211	0.139351
6	6	0	0.00000	-1.169681	1.571121
7	7	0	0.00000	2.285249	2.314979
8	35	0	0.00000	2.857269	-0.735239
9	7	0	0.00000	0.000000	-1.941184
10	35	0	0.00000	-2.857269	-0.735239
11	7	0	0.00000	-2.285249	2.314979

 $E(UHCTH/407/6-31G^*) = -5555.31677723$ Hartree

 $\langle S^2 \rangle$ = 12.0893

Cartesian coordinates of 9 optimized at the UHCTH/407/Sapporo-DZP-2012 level.

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.00000	0.000000	-1.512480
2	6	0	0.00000	1.227556	-0.775103
3	6	0	0.00000	1.221988	0.605756
4	6	0	0.00000	0.000000	1.282667
5	6	0	0.00000	-1.221988	0.605756
6	6	0	0.00000	-1.227556	-0.775103
7	7	0	0.00000	0.000000	-2.840965
8	1	0	0.00000	2.165149	-1.330271
9	1	0	0.00000	2.148298	1.180062
10	9	0	0.000000	0.000000	2.622025

11	1	0	0.000000	-2.148298	1.180062
12	1	0	0.000000	-2.165149	-1.330271
E(UHCTH/40	 7/Sapporo-DZ	P-2012) = -385	5.489491225 H	lartree	
<5 ² > = 2.03	306				

Cartesian coordinates of 10 optimized at the UHCTH/407/Sapporo-DZP-2012 level.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Υ	Z
1	6	0	0.000000	0.000000	-1.949167
2	6	0	0.00000	1.226362	-1.209103
3	6	0	0.00000	1.220171	0.170557
4	6	0	0.00000	0.000000	0.863579
5	6	0	0.00000	-1.220171	0.170557
6	6	0	0.00000	-1.226362	-1.209103
7	7	0	0.00000	0.000000	-3.274878
8	1	0	0.00000	2.165503	-1.761900
9	1	0	0.00000	2.156187	0.727741
10	17	0	0.00000	0.000000	2.586385
11	1	0	0.00000	-2.156187	0.727741
12	1	0	0.000000	-2.165503	-1.761900

E(UHCTH/407/Sapporo-DZP-2012) = -745.920465001 Hartree $\langle S^2 \rangle = 2.0325$

Cartesian coordinates of 11 optimized at the UHCTH/407/Sapporo-DZP-2012 level.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.00000	0.000000	-2.587747
2	6	0	0.00000	1.226304	-1.847999
3	6	0	0.00000	1.220649	-0.467567
4	6	0	0.00000	0.000000	0.222673
5	6	0	0.00000	-1.220649	-0.467567
6	6	0	0.00000	-1.226304	-1.847999
7	7	0	0.00000	0.00000	-3.913537

8	1	0	0.000000	2.165701	-2.400513
9	1	0	0.000000	2.159288	0.084822
10	35	0	0.000000	0.000000	2.114382
11	1	0	0.000000	-2.159288	0.084822
12	1	0	0.000000	-2.165701	-2.400513

E(UHCTH/407/Sapporo-DZP-2012) = -2861.22510531 Hartree $\langle S^2 \rangle = 2.0326$

Cartesian coordinates of 12 optimized at the UHCTH/407/Sapporo-DZP-2012 level.

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	0.00000	0.000000	-3.086843	
2	6	0	0.00000	1.225931	-2.346724	
3	6	0	0.00000	1.220272	-0.966082	
4	6	0	0.00000	0.000000	-0.271241	
5	6	0	0.000000	-1.220272	-0.966082	
6	6	0	0.00000	-1.225931	-2.346724	
7	7	0	0.000000	0.000000	-4.412301	
8	1	0	0.000000	2.165677	-2.898864	
9	1	0	0.000000	2.163628	-0.421582	
10	53	0	0.00000	0.000000	1.838286	
11	1	0	0.000000	-2.163628	-0.421582	
12	1	0	0.000000	-2.165677	-2.898864	

E(UHCTH/407/Sapporo-DZP-2012) = -7210.23006717 Hartree <S²> = 2.0329

Cartesian coordinates of 13 optimized at the UHCTH/407/DZVP level.

Center Atomic		Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	7		0.000000	0.000000	2.493493
2	6	0	0.00000	1.169466	1.803340
3	6	0	0.00000	1.223196	0.371817
4	6	0	0.00000	0.000000	-0.377973

5	6	0	0.000000	-1.223196	0.371817
6	6	0	0.000000	-1.169466	1.803340
7	7	0	0.000000	2.283551	2.557405
8	53	0	0.000000	3.065450	-0.614548
9	7	0	0.000000	0.000000	-1.707148
10	53	0	0.000000	-3.065450	-0.614548
11	7	0	0.000000	-2.283551	2.557405

E(UHCTH/407/DZVP) = -14256.9130462 Hartree

 $\langle S^2 \rangle = 12.0924$

2. DFT calculations of the **D**^{SO} tensors of **1–3**.

The DFT-based \mathbf{D}^{SO} tensor calculations of **1–3** were carried out using three following approaches: Pederson–Khanna (PK), coupled-perturbed (CP), and quasi-restricted orbital (QRO) approaches. We used six pure exchange–correlation functionals (LDA, BP86, BLYP, PBE, RevPBE, and TPSS) and three basis sets (Ahlrichs-DZ, cc-pVDZ, and cc-pVTZ). In **2** and **3**, the scalar relativistic calculations were carried out using the ZORA Hamiltonian,^{1,2} in addition to the non-relativistic calculations. All the calculations were carried out at the UHCTH/407/6-31G* optimized geometry.

The theoretical D^{SO} values of **1–3** are summarized in Tables S1–S3, respectively. The D^{SO} values of **1–3** as calculated at the hybrid CASSCF/MRMP2 method are -0.0124 cm^{-1} , $+0.0065 \text{ cm}^{-1}$, and -0.2537 cm^{-1} , respectively. As pointed out below, we emphasize that the DFT approaches here fail to reproduce our hybrid CASSCF/MRMP2 result.

In the DFT-based approaches, the direction of the D^{SO}_{ZZ} axis depends on both the theoretical methods and the basis sets. In **1**, all the DFT calculations except for QRO-TPSS give negative D^{SO} values, and the D^{SO}_{ZZ} axis is perpendicular to the molecular plane, which is consistent with our hybrid CASSCF/MRMP2 result. In **2**, the PK method gives the **D**^{SO} tensor in which the D^{SO}_{ZZ} axis is parallel to the direction connecting two chlorine atoms, and the other two methods (CP and QRO) predict the D^{SO}_{ZZ} axis to be perpendicular to the molecular plane. As discussed in the present study, the hybrid CASSCF/MRMP2 method predicts that the D^{SO}_{ZZ} axis is parallel to the C_2 symmetry axis, and therefore, importantly all the DFT approaches fail to reproduce our hybrid CASSCF/MRMP2 result even qualitatively. In **3**, the D^{SO}_{ZZ} axis is predicted to be parallel to the direction connecting two bromine atoms, in which case the PK or CO method is adopted in conjunction with the cc-pVDZ and cc-pVTZ basis sets. The QRO method and the CP method with Ahlrichs-DZ basis set give the D^{SO}_{ZZ} axis perpendicular to the molecular plane. In **3**, most calculations predict the positive sign of D^{SO} . Only the combination of the CP approach and Ahlrichs-DZ basis set gives negative D^{SO} values in **3**, but the magnitude of D^{SO} is too large to agree with the experiment, and the direction of the D^{SO}_{ZZ} axis is different from our hybrid CASSCF/MRMP2 result.

- 1 E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, 99, 4597-4610.
- 2 E. van Lenthe, J. G. Snijders and E. J. Baerends, J. Chem. Phys., 1996, 105, 6505–6516.

			D^{SO}/cm^{-1}	
Functional	Basis set	РК	СР	QRO
	Ahlrichs-DZ	-0.0089	-0.0129	-0.0040
LDA	cc-pVDZ	-0.0085	-0.0122	-0.0041
	cc-pVTZ	-0.0101	-0.0145	-0.0046
	Ahlrichs-DZ	-0.0069	-0.0105	-0.0013
BP86	cc-pVDZ	-0.0066	-0.0100	-0.0015
	cc-pVTZ	-0.0076	-0.0116	-0.0012
	Ahlrichs-DZ	-0.0078	-0.0116	-0.0023
BLYP	cc-pVDZ	-0.0075	-0.0110	-0.0026
	cc-pVTZ	-0.0089	-0.0131	-0.0027
	Ahlrichs-DZ	-0.0072	-0.0109	-0.0014
PBE	cc-pVDZ	-0.0068	-0.0103	-0.0016
	cc-pVTZ	-0.0079	-0.0119	-0.0014
	Ahlrichs-DZ	-0.0068	-0.0104	-0.0010
RevPBE	cc-pVDZ	-0.0065	-0.0099	-0.0013
	cc-pVTZ	-0.0074	-0.0113	-0.0008
	Ahlrichs-DZ	-0.0056	-0.0089	+0.0003
TPSS	cc-pVDZ	-0.0053	-0.0084	-0.0005
	cc-pVTZ	-0.0060	-0.0097	+0.0004

Table S1 Theoretical D^{SO} values of 1 as calculated by using the DFT approaches

		$D^{\rm SO}/{ m cm}^{-1}$		
Functional	Basis set	РК	СР	QRO
	Ahlrichs-DZ	+0.0171 (+0.0172)	-0.0621 (-0.0624)	+0.1898 (+0.1912)
LDA	cc-pVDZ	+0.0142 (+0.0141)	-0.0498 (-0.0494)	+0.1480 (+0.1465)
	cc-pVTZ	+0.0164 (+0.0163)	-0.0608 (-0.0607)	+0.1889 (+0.1884)
	Ahlrichs-DZ	+0.0125 (+0.0126)	-0.0529 (-0.0532)	+0.1689 (+0.1699)
BP86	cc-pVDZ	+0.0105 (+0.0104)	-0.0433 (-0.0430)	+0.1385 (+0.1382)
	cc-pVTZ	+0.0117 (+0.0117)	-0.0523 (-0.0522)	+0.1754 (+0.1750)
	Ahlrichs-DZ	+0.0146 (+0.0147)	-0.0565 (-0.0567)	+0.1762 (+0.1774)
BLYP	cc-pVDZ	+0.0122 (+0.0121)	-0.0455 (-0.0452)	+0.1396 (+0.1382)
	cc-pVTZ	+0.0140 (+0.0140)	-0.0558 (-0.0557)	+0.1792 (+0.1788)
	Ahlrichs-DZ	+0.0127 (+0.0129)	-0.0535 (-0.0538)	+0.1708 (+0.1720)
PBE	cc-pVDZ	+0.0107 (+0.0106)	-0.0439 (-0.0435)	+0.1403 (+0.1389)
	cc-pVTZ	+0.0119 (+0.0119)	-0.0528 (-0.0527)	+0.1766 (+0.1763)
	Ahlrichs-DZ	+0.0118 (+0.0118)	-0.0515 (-0.0518)	+0.1654 (+0.1665)
RevPBE	cc-pVDZ	+0.0099 (+0.0098)	-0.0426 (-0.0423)	+0.1385 (+0.1372)
	cc-pVTZ	+0.0109 (+0.0109)	-0.0508 (-0.0507)	+0.1729 (+0.1726)
	Ahlrichs-DZ	+0.0094 (+0.0094)	-0.0457 (-0.0459)	+0.1457 (+0.1468)
TPSS	cc-pVDZ	+0.0079 (+0.0078)	-0.0386 (-0.0383)	+0.1278 (+0.1266)
	cc-pVTZ	+0.0087 (+0.0087)	-0.0464 (-0.0463)	+0.1602 (+0.1600)

Table S2 Theoretical D^{SO} values of **2** as calculated by using the DFT approaches. Values in parenthesisare the relativistic DFT results using ZORA Hamiltonian

		$D^{\rm SO}/{ m cm}^{-1}$		
Functional	Basis set	РК	СР	QRO
	Ahlrichs-DZ	+0.2911 (+0.3184)	-1.1922 (-1.3096)	+4.4348 (+4.8856)
LDA	cc-pVDZ	+0.2545 (+0.2193)	+1.1960 (+1.0570)	+4.3017 (+3.8276)
	cc-pVTZ	+0.2884 (+0.2566)	+1.4471 (+1.3158)	+5.5162 (+5.0369)
	Ahlrichs-DZ	+0.1962 (+0.2148)	-1.0247 (-1.1269)	+3.9214 (+4.3243)
BP86	cc-pVDZ	+0.1713 (+0.1482)	+1.0289 (+0.9133)	+3.9856 (+3.5517)
	cc-pVTZ	+0.1871 (+0.1673)	+1.2374 (+1.1300)	+5.1055 (+4.6696)
	Ahlrichs-DZ	+0.2384 (+0.2610)	-1.0765 (-1.1826)	+4.0690 (+4.4811)
BLYP	cc-pVDZ	+0.2077 (+0.1794)	+1.0833 (+0.9593)	+4.0440 (+3.5991)
	cc-pVTZ	+0.2331 (+0.2080)	+1.3139 (+1.1978)	+5.2148 (+4.7681)
	Ahlrichs-DZ	+0.1978 (+0.2166)	-1.0349 (-1.1390)	+3.9959 (+4.4096)
PBE	cc-pVDZ	+0.1727 (+0.1494)	+1.0326 (+0.9166)	+4.0407 (+3.6008)
	cc-pVTZ	+0.1877 (+0.1681)	+1.2354 (+1.1291)	+5.1425 (+4.7063)
	Ahlrichs-DZ	+0.1788 (+0.1959)	-1.0060 (-1.1081)	+3.9008 (+4.3073)
RevPBE	cc-pVDZ	+0.1566 (+0.1357)	+1.0051 (+0.8936)	+3.9943 (+3.5623)
	cc-pVTZ	+0.1674 (+0.1502)	+1.1946 (+1.0933)	+5.0537 (+4.6299)
	Ahlrichs-DZ	+0.1372 (+0.1504)	-0.8882 (-0.9800)	+3.3625 (+3.7203)
TPSS	cc-pVDZ	+0.1208 (+0.1047)	+0.9241 (+0.8238)	+3.6809 (+3.2911)
	cc-pVTZ	+0.1293 (+0.1160)	+1.1105 (+1.0174)	+4.7038 (+4.3108)

Table S3 Theoretical D^{SO} values of **3** as calculated by using the DFT approaches. Values in parenthesisare the relativistic DFT results using ZORA Hamiltonian

3. UBP86/cc-pVDZ frontier orbitals of **3**.

Fig. S1. UBP86/cc-pVDZ frontier orbitals of **3**. Red arrows denote electron occupations.

4. Spin configuration-based and orbital region partitioning-based analyses of the **D**^{SO} tensors of **1**, **2**, and **9–12** as calculated at PK-DFT.

The D^{SO} tensors calculated by means of Pederson–Khanna DFT approach can be analyzed in terms of the spin configuration-based method and the orbital region partitioning-based method, which has been proposed by us. All the calculations were carried out by using GAMESS-US software and laboratory-coded programs. The BP86 exchange–correlation functional was used for all the calculations. The cc-pVDZ and the Sapporo-DZP-2012 basis sets were used for 1 and 2, and for 9–12, respectively. The spin–orbit coupling integrals were evaluated using one-electron SOC Hamiltonian with effective nuclear charges (ZEFTYP=3-21G in GAMESS input). The decomposed D^{SO} tensors are given in Tables S4–S9.

Table S4 The decomposed D^{SO} tensor of 1 on the basis of the spin configurations and orbital region partitioning.

Excitations	D_{xx}/cm^{-1}	D_{yy}/cm^{-1}	D_{zz} /cm ⁻¹
$\alpha \rightarrow \alpha$	-0.03507	-0.03793	-0.03638
$\beta \rightarrow \beta$	-0.03898	-0.04543	-0.04008
$\alpha \rightarrow \beta$	0.04251	0.06242	0.05716
$\beta \rightarrow \alpha$	0.03144	0.03202	0.02922
$DOR \rightarrow UOR$	0.00002	0.00015	0.00010
$SOR \rightarrow UOR$	-0.00003	-0.00006	-0.00005
$DOR \rightarrow SOR$	0.00295	0.01130	0.00868
$SOR \rightarrow SOR$	-0.00304	-0.00031	0.00118

Table S5 The decomposed D^{SO} tensor of 2 on the basis of the spin configurations and orbital region partitioning.

Excitations	D_{xx} /cm ⁻¹	D_{yy} /cm ⁻¹	D_{zz} /cm ⁻¹
$\alpha \rightarrow \alpha$	-0.73145	-0.63856	-0.69632
$\beta \rightarrow \beta$	-0.73203	-0.71875	-0.73626
$\alpha \rightarrow \beta$	0.73596	0.75718	0.76823
$\beta \rightarrow \alpha$	0.72669	0.61812	0.67301
$DOR \rightarrow UOR$	0.00065	0.00057	0.00078
$SOR \rightarrow UOR$	-0.00071	-0.00092	-0.00138
$DOR \rightarrow SOR$	0.00352	0.02267	0.00723
$SOR \rightarrow SOR$	-0.00429	-0.00433	0.00203

Excitations	D_{xx} /cm ⁻¹	D_{yy}/cm^{-1}	D_{zz} /cm ⁻¹
$\alpha \rightarrow \alpha$	-2.23000	-2.75714	-1.16286
$\beta \rightarrow \beta$	-2.07143	-2.52178	-1.10907
$\alpha \rightarrow \beta$	2.23702	2.76597	1.26205
$\beta \rightarrow \alpha$	2.06095	2.50999	1.07332
$DOR \rightarrow UOR$	-0.00005	0.00027	0.00001
$SOR \rightarrow UOR$	-0.00109	-0.00183	-0.00001
$DOR \rightarrow SOR$	-0.00232	-0.00142	0.00836
$SOR \rightarrow SOR$	0.00000	0.00000	0.05508

Table S6 The decomposed D^{SO} tensor of 9 on the basis of the spin configurations and orbital region partitioning.

Table S7 The decomposed D^{SO} tensor of 10 on the basis of the spin configurations and orbital region partitioning.

Excitations	D_{xx} /cm ⁻¹	D_{yy} /cm ⁻¹	D_{zz}/cm^{-1}
$\alpha \rightarrow \alpha$	-63.57499	-81.09573	-44.87691
$\beta \rightarrow \beta$	-63.23203	-79.41198	-44.93132
$\alpha \rightarrow \beta$	63.41209	81.01547	45.15162
$\beta \rightarrow \alpha$	63.39056	79.47558	44.70543
$DOR \rightarrow UOR$	0.00031	0.01017	0.00008
$SOR \rightarrow UOR$	-0.00234	-0.02396	-0.00008
$DOR \rightarrow SOR$	-0.00235	-0.00287	0.01048
$SOR \rightarrow SOR$	0.00000	0.00000	0.03834

Table S8 The decomposed D^{SO} tensor of 11 on the basis of the spin configurations and orbital region partitioning.

Excitations	D_{xx} /cm ⁻¹	D_{yy} /cm ⁻¹	D_{zz} /cm ⁻¹
$\alpha \rightarrow \alpha$	-5988.45701	-6528.10178	-4464.22181
$\beta \rightarrow \beta$	-5971.47814	-6406.47197	-4458.72340
$\alpha \rightarrow \beta$	5971.15302	6510.77034	4466.16947
$\beta \rightarrow \alpha$	5988.78324	6422.29560	4456.76789
$DOR \rightarrow UOR$	0.11334	1.48831	0.00934
$SOR \rightarrow UOR$	-0.10938	-2.96260	-0.01166
$DOR \rightarrow SOR$	-0.00285	-0.03352	-0.00722
$SOR \rightarrow SOR$	0.00000	0.00000	0.00170

Excitations	D_{xx}/cm^{-1}	D_{yy}/cm^{-1}	D_{zz}/cm^{-1}
$\alpha \rightarrow \alpha$	-30575.83214	-31869.52931	-24168.95133
$\beta \rightarrow \beta$	-30536.72331	-31457.69619	-24161.25987
$\alpha \rightarrow \beta$	30532.77439	31853.89979	24200.00438
$\beta \rightarrow \alpha$	30579.79862	31470.03486	24129.99989
$DOR \rightarrow UOR$	0.83321	3.99230	0.20160
$SOR \rightarrow UOR$	-0.80813	-7.02860	-0.31688
$DOR \rightarrow SOR$	-0.00753	-0.25456	-0.65933
$SOR \rightarrow SOR$	0.00000	0.00000	0.56767

Table S9 The decomposed D^{SO} tensor of 12 on the basis of the spin configurations and orbital region partitioning.