Supporting Information

Electrochemical reactions of lithium-sulfur batteries: an analytical study using the organic conversion technique

Ayako Kawase^{1*}, Soichi Shirai², Yoshinari Yamoto³, Ryuichi Arakawa³ and Toshikazu Takata⁴

¹Daihatsu Motor Co., Ltd., R&D Division, Ryuo, Gamo, Shiga 520-2593, Japan

²Toyota Central R&D Laboratories, Inc., Inorganic Materials Division, Nagakute, Aichi 480-1192, Japan

³Department of Applied Chemistry, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Japan

⁴Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Contents

- A. Experimental and theoretical mass spectra.
- B. LC/MS results at measuring points during cell charge.
- C. Models for the calculations of ¹H NMR chemical shifts.
- D. UV-Vis spectra at measuring points during cell charge.
- E. Models for the calculations of UV-Vis spectra.
- F. HOMO and LUMO levels of lithium polysulfide species.
- G. Color change as a result of conversion from Li_2S_x to Bz_2S_x
- H. Conversion behavior of Li_2S_x (x= 3 to 8) and instability of long Bz_2S_x (x= 6 to 8).
- I. Conversion behavior of Li_2S to Bz_2S .

Abbreviations used in this Supporting Information

Bz: Benzyl, LC: liquid chromatography, MS: mass spectrometry, NMR: nuclear magnetic resonance spectrometry, UV/Vis: ultraviolet-visible absorption, HOMO: Highest Occupied Molecular Orbital, LUMO: Lowest Unoccupied Molecular Orbital,

A. Experimental and theoretical mass spectra.

Fig. S1 Experimental mass spectra and the corresponding theoretical isotope patterns for ammonium adducts of benzylized polysulfides (a) Bz_2S_3 and (b) Bz_2S_4 .

B. LC/MS results at measuring points during cell charge.

Fig. S2 LC data for points 5 to 9 with Bz₂S, Bz₂S₂ and S₈ as references.

C. Models for the calculations of ¹H NMR chemical shifts.

Fig. S3 Benzylized polysulfide models for calculation of ¹H NMR chemical shifts. (yellow, S; gray, C; and light blue, H) The methylene H in Bz_2S_5 circled in red is located close to the fifth S atom, resulting in a hydrogen-bond-like interaction.

D. UV-Vis spectra at measuring points during cell charge.

Fig. S4 Variations in UV-Vis spectra of electrolyte solutions over the charging process. Measuring points are shown in Fig. 1 of the text.

Fig. S5 Lithium-polysulfide, lithium-polysulfide radical and sulfur models for the calculations of UV-Vis spectra (yellow, S; and red, Li).

F. HOMO and LUMO levels of lithium polysulfide species.

Table S1. HOMO and LUMO levels, and the HOMO-LUMO gap (Δ HOMO-LUMO) of Li₂S_x, LiS_x radicals and S₈.

Closed-shell species									
	Li ₂ S	Li_2S_2	Li_2S_3	Li_2S_4	Li_2S_5	Li_2S_6	Li_2S_7	Li_2S_8	S_8
LUMO / eV	-0.25	-0.69	-1.13	-1.40	-2.16	-1.90	-2.80	-2.69	-2.75
HOMO / eV	-4.77	-4.66	-4.91	-5.47	-5.78	-5.68	-6.24	-6.02	-7.40
ΔHOMO-LUMO / eV	4.52	3.97	3.78	4.07	3.63	3.78	3.43	3.34	4.65
Radical species									
		LiS_2 ·	LiS_3 ·	LiS_4 ·	LiS_5 ·	LiS ₆ .	LiS ₇ .	LiS_8 ·	
β -LUMO / eV		-3.28	-3.52	-3.65	-4.07	-2.26	-4.06	-3.85	
β -HOMO / eV		-5.27	-6.32	-5.78	-5.82	-5.70	-6.01	-6.33	
ΔHOMO-LUMO / eV		1.99	2.80	2.13	1.75	3.44	1.95	2.48	

Closed-shell species

G. Color change as a result of conversion from Li_2S_x to Bz_2S_x

Fig. S6 (a) Li_2S_x (x = 3 to 8) solution and (b) Bz_2S_x solution. One ml of Li_2S_x solution becomes transparent within one minute of the addition of 1 ml of benzyl chloride, indicating immediate conversion of Li_2S_x to Bz_2S_x . The red color of the Li_2S_x solution well correlates with UV-Vis spectra in Fig. 4 of the text.

H. Conversion behavior of Li_2S_x (x= 3 to 8) and instability of long Bz_2S_x (x= 6 to 8)

Fig. S7 Relative amounts of Bz_2S_x from Li_2S_x (x=3 to 8) against conversion time. The benzyl chloride was added at zero hour. Li_2S_x mixture was prepared by reaction of S_8 and Li_2S ($S_8:Li_2S = 7:8$ molar ratio) in DME and filtration. Relative amounts were estimated from LC peak area using the calculated relative absorbance at 254 nm. (a) The conversion of Li_2S_x (x=3 to 8) is almost complete within three hours. (b) The longer Li_2S_i (i = 6 to 8) are split to shorter Li_2S_j (j = 3 to 5) after 24 hours (one day).

I. Conversion behavior of Li₂S.

Fig. S8 Relative amounts of Bz_2S and Bz_2S_2 converted from Li_2S against conversion time. The benzyl chloride was added at zero hour and the solvent was DME. Relative amounts were estimated from LC peak area, using calibration curves. The Bz_2S maximum is around 96 hours (four days). After the Bz_2S maximum, Bz_2S_2 appears, indicating Li_2S coalesces to Li_2S_2 .