Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supplementary Information

- **Table S1**Relative energies (B3LYP/LANL2DZ in eV) and relative abundances (%) for
the $Pt(CN)_6^{2-}M_2$ and $Pt(CN)_4^{2-}M_2$ M = Ad, Cy, Th, Ur complexes.
- **Figure S1** Geometric structures of the two conformers (B3LYP/LANL2DZ) of a) $Pt(CN)_6^{2-}Ad, b) Pt(CN)_6^{2-}Cy, c) Pt(CN)_6^{2-}Th, and d) Pt(CN)_6^{2-}Ur$ labelled I and II. Relative energies (eV) for the two isomers are displayed.
- **Figure S2** Geometric structures of the two conformers (B3LYP/LANL2DZ) of a) $Pt(CN)_4^{2-}Ad, b) Pt(CN)_4^{2-}Cy, c) Pt(CN)_4^{2-}Th, and d) Pt(CN)_4^{2-}Ur$ labelled I and II. Relative energies (eV) for the two isomers are displayed.
- **Figure S3** Geometric structures of the three conformers (B3LYP/LANL2DZ) of a) $Pt(CN)_6^{2-}Ad_2$, b) $Pt(CN)_6^{2-}Cy_2$, c) $Pt(CN)_6^{2-}Th_2$, and d) $Pt(CN)_6^{2-}Ur_2$ labelled I and II. Relative energies (eV) for the two isomers are displayed.
- Figure S4Geometric structures of the three conformers (B3LYP/LANL2DZ) of a) $Pt(CN)_4^2 \cdot Ad_2$, b) $Pt(CN)_4^2 \cdot Cy_2$, c) $Pt(CN)_4^2 \cdot Th_2$, and d) $Pt(CN)_4^2 \cdot Ur_2$ labelled I and II. Relative energies (eV) for the two isomers are displayed.

	Relative Energies			Relative Abundances		
	Ι	II	III	Ι	II	III
$Pt(CN)_6^2 \cdot M_2$						
Adenine	0	0.012	0.078	59.8	37.3	2.9
Uracil	0	0.006	0.592	56.1	43.9	0.0
Thymine	0	0.060	0.598	91.0	9.0	0.0
Cytosine	0	0.080	0.164	95.6	4.2	0.2
$Pt(CN)_4^2 \cdot M_2$						
Adenine	0	0.021	0.170	69.4	30.5	0.1
Uracil	0	0.091	0.411	89.9	10.1	0.0
Thymine	0	0.105	0.870	98.3	1.7	0.0
Cytosine	0	0.091	0.411	97.1	2.9	0.0

Table S1: Relative energies (eV)^a and relative abundances (%) for the $Pt(CN)_6^{2-}M_2$ and $Pt(CN)_4^{2-}M_2$ M = Ad, Cy, Th, Ur complexes.^{a,b}

a Relative energies calculated at the B3LYP/ LANL2DZ level of theory.
b Relative abundances calculated using the Boltzmann distribution and T=373K.

Fig. S1

Fig. S2

I $E_{rel} = 0.00$

III $E_{rel} = 0.08$

 $I \quad E_{rel} = 0.00$

III $E_{rel} = 0.16$

3

I $E_{rel} = 0.00$

 $II \quad E_{rel} = 0.08$

 $II \quad E_{rel} = 0.01$

 $III \quad E_{rel} = 0.59$

 $I = E_{rel} = 0.00$

 $I = E_{rel} = 0.00$

II $E_{rel} = 0.06$

III Erel = 0.86

