Supporting Information for:

Covalently Linked Perylenetetracarboxylic Diimide Dimers and Trimers with Rigid "J-type" Aggregation Structure

Heyuan Liu,^a Li Shen,^a Zhaozhen Cao,^a and Xiyou Li*^a

Key laboratory of colloid and interface chemistry, Ministry of Education of China, Shandong University, Jinan, China, 250100

E-mail: xiyouli@sdu.edu.cn

Contents

- 1. Synthesis and characterization of the new compounds.
- 2. Copies of the ¹H NMR spectra, ¹³C NMR spectra and MALDI-TOF or ESI-MS spectra of the new compounds.
- 3. Copies of the ¹H NMR spectra of the two isomers of H-type aggregate.
- 4. Minimized structures of compound D_1 , D_2 , T_1 and T_2 (hydrogen atoms are omitted for clarity).
- 5. The excitation spectra of D_1 , D_2 , T_1 and T_2 .
- 6. Split transient fluorescence spectra of D_2 and T_1 .
- 7. The absorption and fluorescence spectra of D_1 , D_2 , T_1 and T_2 in CH_2Cl_2 .
- 8. The fitting of the fluorescence decay kinetics of D_1 , D_2 , T_1 and T_2 in toluene.
- 9. HPLC chromatogram of **D**₁, **D**₂, **T**₁ and **T**₂.
- **10.** Copies of the ¹H NMR spectra of N,N'-di(cyclohexyl)perylene-3,4:9,10-tetracarboxylic diimide (pure 1,7-isomer).

1. Synthesis and characterization of these compounds.

1.1 Materials:

1,7-Di(4-tert-butyl)phenoxyl-perylene-9,10-(N-hexyl)-dicarboxylic imide-3,4dicarboxylic anhydride (7),^{S1} 1,7-di(p-tert-butylphenoxy)perylene-3,4:9,10tetracarboxylic dianhydride (10),^{S2} 4-Bromo-2,7-di-*tert*-butyl-9,9dimethylxanthene (1),^{S3} 4-ethynylaniline, ^{S4} 4 and 6^{S5-S6} were prepared following the literature methods and fully characterized by ¹H NMR and MALDI-TOF or ESI mass spectra. All other chemicals were purchased from commercial source. Solvents were analytical grades.

Compound 2: Method A: To a suspension of 1^{S3} (401 mg, 1 mmol) in acetic acid (50 mL) was added dropwise a mixture of fuming nitric acid (50 ml) and acetic acid (50 mL) over 1 h. The resulted reaction mixture was stirred continuously for 42 h at room temperature. Then the reaction mixture was poured into lots of water. Precipitates were collected by filtration. After washed with water for several times, the solid was dried at room temperature in vacuum. The solid was purified by column chromatography on silica gel (petroleum ether/chloroform=1.7:1) to give 2 as a orange solid (210 mg, 47%). ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): 7.80 (d, 1H), 7.66 (d, 1H), 7.51 (d, 1H), 7.36 (d, 1H), 1.68 (s, 6H), 1.38 (s, 9H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): 148.1, 146.1, 144.3, 141.8, 138.4, 132.6, 130.4, 128.9, 127.3, 121.5, 120.5, 110.5, 35.5, 34.8, 34.7, 32.1, 31.9, 31.5, 31.4, 31.2, 30.9; MS (ESI): calcd: 445.13; found: 446.13 [M+H⁺]; Elemental analysis (%), m/z: calculated for C₂₃H₂₈BrNO₃: C 61.89, H 6.32, N 3.14; found: C 61.74, H 6.28, N 3.10.

Method B: Compound **2** was also synthesized by the nitration of **1** with $SiO_2 \cdot HNO_3$ according to a literature procedure.^{S5a} Over a stirred suspension of HNO₃ (1.03 g, 0.5 mmol, 25% on SiO₂) in 40 ml of CH₂Cl₂, **1** (401 mg, 1

mmol) in 10 ml of CH_2Cl_2 was rapidly added. The resulting solution was stirred at room temperature for 15 min, and then SiO_2 was separated from the solution by filtration and washed for several times with CH_2Cl_2 . The combined solution was evaporated to dry under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/chloroform=1.7:1) to give **2** as orange solid (165 mg, 37%).

Compound 3: Under the protection of nitrogen, a mixture of 2 (446 mg, 1 mmol), 4-aminophenylboric acid (164 mg, 1.2 mmol), sodium tert-butoxide (192 mg, 2 mmol), tetrakis(triphenylphosphine) palladium (5.78 mg, 0.005 mmol), and DMF (50 ml) was heated to 90°C for 10 h. Upon cooling, 200 mL water was added. The mixture was extracted with dichloromethane for three times (3×50 mL) and organic phase were combined and dried over MgSO₄ for over night. After removing the solvents under reduced pressure, the crude solid purified by column chromatography on silica gel (petroleum was ether/chloroform=1.5:1) to give **3** as a yellow solid (320 mg, 70%). ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): 7.66 (d, 1H), 7.63 (d, 1H), 7.40 (m, 2H), 7.35 (d, 1H), 7.28 (d, 1H), 6.80 (d, 2H), 1.70 (s, 6H), 1.35 (d, 18H); ¹³C NMR (100 MHz, CDCl₃): 146.6, 145.5, 145.3, 144.3, 142.2, 138.5, 132.9, 130.9, 129.7, 129.0, 127.7, 127.1, 126.4, 120.7, 120.1, 114.8, 35.1, 34.7, 34.6, 32.2, 31.5, calcd: 458.59; found: 459.26 [M+H⁺], 481.24 31.2. MS (ESI): m/z: [M+Na⁺]; Elemental analysis (%), calculated for $C_{29}H_{34}N_2O_3$: C 75.95, H 7.47, N 6.11; found: C 75.81, H 7.38, N 6.02.

Compound 5: ^{S7} Following the Sonogashira coupling protocol, **2** (446.0 mg, 1.0 mmol), 4-ethynylaniline (140.0 mg, 1.2 mmol), $PdCl_2(PPh_3)_2$ (35.5 mg, 0.05 mmol), and CuI (19.1 mg, 0.1 mmol) were dissolved in triethylamine (100 ml). The solution was bubbled with N₂ for 10 min, then the resulting solution

was heated to 80°C and stirred at this temperature for overnight. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (CH₂Cl₂). **5** is collected as a yellow solid (246 mg, 51%). ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): 7.80 (d, 1H), 7.64 (d, 1H), 7.55 (m, 2H), 7.42 (d, 1H), 7.32(d, 1H), 6.68 (m, 2H), 1.66 (s, 6H), 1.36 (s, 9H), 1.33 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): 147.4, 146.7, 146.5, 145.6, 142.0, 138.3, 133.4, 132.7, 128.7, 128.2, 127.4, 121.8, 120.5, 114.8, 112.9, 112.4, 95.1, 82.7, 34.9, 34.7, 34.5, 32.1, 31.4, 31.2; MS (ESI): m/z: calcd: 482.61; found: 483.26 [M+H⁺], 505.24 [M+Na⁺]; Elemental analysis (%), calculated for $C_{31}H_{34}N_2O_3$: C 77.15, H 7.10, N 5.80; found: C 77.21, H 7.18, N 5.71.

Compound 8: A mixture of **7** (77.2 mg, 0.1 mmol), **3** (45.8 mg, 0.1 mmol), and imidazole (0.5 g, 7.4 mmol) in toluene (50 ml) was refluxed under N₂ for 12 h. After the solvent was evaporated under reduced pressure, the residue was dissolved in chloroform and washed with water for several times to remove imidazole. The chloroform was then removed under reduced pressure. The residue was purified by column chromatography on silica gel using CH₂Cl₂ as the eluent. **8** was collected as a red solid (97.0 mg, 80%). M.p. > 300 °C; ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): 9.60 (d, 2H), 8.64 (d, 1H), 8.56 (d, 1H), 8.40 (s, 1H), 8.34 (s, 1H), 7.76 (d, 2H), 7.67 (d, 1H), 7.64 (d, 1H), 7.49-7.44 (m, 7H), 7.39 (d, 1H), 7.14-7.10 (m, 4H), 4.15 (t, 2H), 1.73 (s, 6H), 1.67 (m, 2H), 1.45-1.30 (m, 42H), 0.88 (t, 3H); ¹³C NMR (100 MHz, CDCl₃): 163.5, 163.3, 163.0, 155.7, 155.5, 152.6, 152.5, 148.3, 148.2, 146.8, 145.5, 144.3, 141.9, 138.5, 137.8, 134.0, 133.7, 133.6, 132.7, 130.9, 130.4, 130.1, 129.4, 129.3, 129.2, 128.9, 128.1, 127.5, 127.4, 127.1, 126.9, 125.3, 125.0, 124.1, 124.0, 123.9, 123.8, 123.7, 122.5, 122.2, 121.9, 120.2, 119.3, 119.1, 40.9, 35.1, 34.7, 34.6, 34.5, 32.3, 31.5, 31.4, 31.2, 28.0, 26.8, 22.5, 14.0; MS (MALDI-TOF): *m/z*: calcd: 1211.57; found: 1212.58 [M+H⁺], 1234.56 [M+Na⁺]; Elemental analysis (%). calculated for C₇₉H₇₇N₃O₉: C 78.26, H 6.40, N 3.47; found: C 78.15, H 6.28, N 3.54.

Compound 9: Method C:^{S5-S6} Compound **8** (121.2 mg, 0.10 mmol), NH_2NH_2 ·H₂O (5.0 mg, 0.067 mmol), and graphite (excess) were heated in refluxing EtOH (50 ml) for 24 h under N_2 atmosphere. The cooled mixture was diluted with CH₂Cl₂ (50 ml). Graphite was filtered and washed for several times with CH₂Cl₂. The solution was concentrated in a rotary evaporator. The residue was purified by column chromatography on silica gel using CH₂Cl₂ as the eluent. 9 was collected as a violet solid (106.4 mg, 90%). M.p. > 300 °C; ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): 9.56 (m, 2H), 8.61 (d, 1H), 8.53 (d, 1H), 8.35 (s, 1H), 8.30 (s, 1H), 7.81 (d, 2H), 7.49-7.41 (m, 7H), 7.30 (d, 1H), 7.12-7.07 (m, 4H), 6.79 (s, 1H), 6.60 (s, 1H), 4.14 (t, 2H), 1.73 (m, 2H), 1.64 (s, 6H), 1.37-1.25 (m, 42H), 0.88 (t, 3H); ¹³C NMR (100 MHz, CDCl₃): 163.5, 163.2, 163.1, 162.9, 155.6, 152.5, 152.4, 148.4, 148.3, 145.8, 145.3, 145.2, 139.5, 133.8, 133.3, 130.6, 130.4, 130.0, 129.5, 129.3, 129.2, 128.9, 128.8, 128.3, 128.0, 127.5, 125.7, 125.3, 124.9, 123.9, 123.8, 123.7, 123.6, 122.4, 122.3, 122.2, 119.3, 119.1, 40.7, 34.9, 34.5, 34.4, 31.8, 31.6, 31.5, 28.0, 26.8, 22.5, 14.0; MS (MALDI-TOF): *m/z*: calcd: 1183.60; found: 1184.20 [M+H⁺]; Elemental analysis (%), calculated for C₇₉H₇₉N₃O₇: C 80.24, H 6.73, N 3.55; found: C 80.34, H 6.61, N 3.64.

Method D: To a solution of **8** (121.2 mg, 0.10 mmol) in ethanol (10 mL) was added a mixture of HCl (36%, 0.3 ml) and $SnCl_2 \cdot 2H_2O$ (102 mg, 0.45 mmol) in ethanol (10 mL) at room temperature in 1 h.^{14C} After refluxing for 24 h, the solvent was evaporated under reduced pressure, the residue was dissolved in

chloroform and extracted with chloroform for several times. And the chloroform phase was washed with diluted NaOH aqueous solution until pH ≥ 11 was reached. The chloroform was then removed under reduced pressure. The residue was purified by column chromatography on silica gel using CH₂Cl₂ as the eluent. **9** was collected as a violet solid (99.4 mg, 84%).

Compound 11: By using a similar procedure to that for preparing compound 8, with 5 (42.8 mg, 0.1 mmol) instead of 3 as starting material, compound 11 was synthesized. The product was purified by column chromatography on silica gel using dichloromethane as the eluent. 11 was collected as a red solid (98.8 mg, 80%). M.p. > 300 °C; ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): 9.61 (m, 2H), 8.63 (d, 1H), 8.56 (d, 1H), 8.38 (s, 1H), 8.34 (s, 1H), 7.90 (d, 2H), 7.79 (d, 1H), 7.65 (d, 1H), 7.49-7.46 (m, 5H), 7.40 (d, 1H), 7.36 (d, 2H), 7.11 (m, 4H), 4.14 (t, 2H), 1.68 (m, 8H), 1.41-1.25 (m, 42H), 0.88 (t, 3H); ¹³C NMR (100 MHz, CDCl₃): 163.4, 163.3, 163.0, 155.6, 155.5, 152.6, 152.5, 148.3, 148.2, 147.8, 146.6, 145,7 141.8, 138.4, 134.6, 133.8, 133.4, 132.9, 132.5, 130.5, 130.1, 129.4, 129.3, 129.0, 128.9, 128.7, 127.5, 127.3, 125.4, 124.9, 124.2, 124.0, 123.8, 123.7, 122.9, 122.2, 120.5, 119.3, 119.1, 111.6, 85.5, 93.5, 41.0, 35.0, 34.8, 34.6, 32.2, 31.5, 31.4, 31.2, 29.7, 28.0, 26.8, 22.5, 14.0; MS (MALDI-TOF): *m/z*: calcd: 1236.49; found: 1237.80 [M+H⁺]; Elemental analysis (%), calculated for C₈₁H₇₇N₃O₉: C 78.68, H 6.28, N 3.40; found: C 78.60, H 6.19, N 3.57.

Compound 12: was synthesized according to the above method C from compound **11** (123.6 mg, 0.10 mmol). The product was purified by column chromatography on silica gel using dichloromethane as the eluent. **12** was collected as a violet solid (108.5 mg, 90%). M.p. > 300 °C; ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): 9.58 (m, 2H), 8.56 (d, 2H), 8.32 (d, 2H), 7.74 (d, 2H), 7.49-7.46 (m, 4H), 7.41 (m, 2H), 7.33 (d, 2H), 7.10 (m, 4H), 6.85 (s, 1H), 6.80 (s, 1H), 4.14 (t, 2H), 1.72 (m, 2H), 1.63 (s, 6H), 1.45-1.29 (m, 42H), 0.88 (t, 3H); ¹³C NMR (100 MHz, CDCl₃): 163.4, 163.3, 163.0, 162.9, 155.6, 155.5, 152.5, 152.4, 148.9, 148.4, 148.3, 146.1, 145.2, 134.6, 133.9, 133,3, 132.5, 130.5, 130.0, 129.4, 129.2, 129.0, 128.8, 127.7, 127.5, 125.3, 124.9, 124.4, 124.1, 124.0, 123.9, 123.8, 123.6, 123.5, 122.3, 122.0, 119.2, 119.1, 92.5, 87.0, 41.0, 34.8, 34.6, 34.5, 31.9, 31.5, 31.4, 28.0, 26.8, 22.5, 14.0; MS (MALDITOF): m/z: calcd: 1207.60; found: 1208.49 [M+H⁺]; Elemental analysis (%), calculated for C₃₁H₃₄N₂O₃: C 80.63, H 6.60, N 3.48; found: C 80.77, H 6.72, N 3.40.

This compound was also synthesized according to method D from compound **11** (123.6 mg, 0.10 mmol). After purification, Compound **12** was collected as a violet solid (103.8 mg, 86%).

D₁: A mixture of **7** (155 mg, 0.2 mmol), **4** (42.8 mg, 0.1 mmol), and imidazole (0.5 g, 7.4 mmol) in toluene (50 mL) was refluxed under N₂ for 12 h. After the solvent was evaporated under reduced pressure, the residue was dissolved in chloroform and washed with water for several times to remove imidazole. The chloroform was then removed under reduced pressure. The residue was purified by column chromatography on silica gel using CHCl₃ as the eluent. After recrystallization from chloroform and methanol, **D**₁ was collected as a red solid (34.8mg, 18%). M.p. > 300 °C; ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): 9.55 (d, 1H; perylene), 9.30 (m, 3H; perylene), 8.60 (m, 2H; perylene), 8.35 (s, 1H; perylene), 8.25 (d, 2H; perylene), 8.16 (d, 1H; perylene), 8.04 (s, 1H; perylene), 7.84 (s, 1H; perylene), 7.59 (d, 2H; phenyl), 7.56 (s, 2H; xanthene), 7.54-7.32 (m, 12H; phenoxyl), 7.14 (s, 2H; xanthene), 7.09-7.01 (m, 4H; phenoxyl), 6.22 (d, 2H; phenyl), 4.16 (t, 2H; NCH₂), 2.87

(m, 1H; NCH₂), 2.73 (m, 1H; NCH₂), 1.75 (m, 8H; xanthene(CH₃)+CH₂), 1.43-1.32 (m, 60H; xanthene(t-butyl)+phenyl(t-butyl)+CH₂), 1.21-1.05 (m, 8H; CH₂), 0.90 (t, 3H; CH₃), 0.80 (t, 3H; CH₃); ¹³C NMR (75 MHz, CDCl₃): 163.2, 163.1, 163.0, 162.9, 162.2, 161.8, 161.6, 156.7, 156.5, 154.8, 154.3, 152.6, 152.4, 152.1, 148.7, 148.1, 145.6, 144.2, 143.6, 138.4, 133.5, 133.4, 133.0, 132.7, 132.2, 130.3, 130.2, 129.9, 129.8, 129.7, 129.2, 129.0, 128.6, 128.4, 128.1, 128.0, 127.7, 127.6, 127.4, 127.3, 127.1, 125.3, 124.7, 124.6, 124.3, 124.1, 123.7, 123.5, 123.0, 122.8, 122.6, 122.3, 122.2, 122.1, 121.6, 121.1, 121.0, 120.5, 120.3, 119.0, 118.9, 40.7, 39.3, 34.8, 34.7, 34.6, 34.5, 33.8, 32.7, 31.6, 31.5, 31.2, 28.2, 27.3, 26.9, 26.5, 22.6, 22.4, 14.0, 13.9; MS (MALDI-TOF): *m/z*: calcd: 1937.37; found: 1938.97 [M+H⁺]; Elemental analysis (%), calculated for C₁₂₉H₁₂₂N₄O₁₃: C 80.01, H 6.35, N 2.89; found: C 79.89, H 6.29, N 2.81.

D₂: By using a similar procedure to that for preparing **D**₁, with **6** (45.2 mg, 0.1 mmol) instead of **4** as starting material, JD₂ was synthesized. The product was purified by column chromatography on silica gel using chloroform as the eluent. After recrystallization from chloroform and methanol, **D**₂ was collected as a red solid (39.2mg, 20%). M.p. > 300 °C; ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): 9.67 (d, 1H; perylene), 9.45 (m, 3H; perylene), 8.62 (q, 2H; perylene), 8.39 (s, 1H; perylene), 8.31 (s, 1H; perylene), 8.10 (q, 2H; perylene), 7.96 (s, 1H; perylene), 7.92 (s, 1H; perylene), 7.53 (m, 3H; phenoxyl+xanthene), 7.48-7.42 (m, 6H), 7.29 (m, 3H; phenoxyl+xanthene), 7.17-7.10 (m, 7H; phenoxyl+xanthene), 7.01 (d, 1H; xanthene),6.68 (d, 2H; phenyl), 6.48 (d, 2H; phenyl), 4.16 (t, 2H; NCH₂), 2.94 (t, 2H; NCH₂), 1.70 (m, 8H; xanthene(CH₃)+CH₂), 1.40-1.31 (m, 60H; xanthene(t-butyl)+phenyl(t-butyl)+CH₂), 1.10(m, 3H; CH₃), 0.90 (m, 8H CH₂), 0.73 (t, 3H; CH₃); ¹³C

NMR (75 MHz, CDCl3): 163.3, 163.0, 162.9, 162.8, 162.2, 162.0, 161.9, 156.3, 156.2, 155.3, 155.1, 152.7, 152.6, 152.5, 148.4, 148.3, 148.2, 148.1, 145.7, 145.4, 144.5, 142.2, 133.6, 133.5, 131.5, 131.1, 130.2, 130.1, 129.9, 129.7, 129.5, 129.4, 129.3, 129.2, 129.0, 128.9, 128.7, 128.0, 127.8, 127.6, 127.5, 127.4, 125.3, 124.8, 124.5, 124.4, 124.2, 124.0, 123.9, 123.8, 123.7, 123.6, 123.5, 123.4, 123.3, 123.0, 122.9, 122.4, 122.3, 121.7, 121.3, 121.2, 120.5, 120.0, 119.8, 119.1, 40.7, 39.5, 35.7, 34.9, 34.6, 34.5, 32.6, 32.0, 31.9, 31.6, 31.5, 30.88, 29.7, 28.0, 27.2, 26.8, 26.4, 22.5, 22.3, 14.1, 13.9; MS (MALDI-TOF): m/z: calcd: 1960.39; found: 1961.24 [M+H⁺]; Elemental analysis (%), calculated for $C_{131}H_{122}N_4O_{13}$: C 80.26, H 6.27, N 2.86; found: C 80.13, H 6.18, N 2.94.

T₁: A mixture of **9** (236 mg, 0.2 mmol), **10** (68.8 mg, 0.1 mmol), and imidazole (1.0 g, 14.8 mmol) in toluene (50 mL) was refluxed under N₂ for 12 h. After the solvent was evaporated under reduced pressure, the residue was dissolved in chloroform and washed with water for several times to remove imidazole. The chloroform was then removed under reduced pressure. The residue was purified by column chromatography on silica gel using CHCl₃ as the eluent. After recrystallization from chloroform and methanol, **T**₁ was collected as a red solid (42.2 mg, 14%). M.p. > 300 °C; ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): 9.41(d, 2H; perylene), 9.36(d, 2H; perylene), 9.15(d, 2H; perylene), 8.32(d, 2H; perylene), 8.30(s, 2H; perylene), 7.48(s, 2H; perylene), 7.45(d, 4H; phenyl), 7.36(s, 2H; xanthene), 7.31(t, 8H; phenoxyl), 7.22-7.14 (m, 8H; phenoxyl), 7.04 (s, 2H; xanthene), 6.96 (s, 2H; xanthene), 6.90 (t, 8H; phenoxyl), 6.12 (d, 4H; phenyl), 4.08 (t, 4H; NCH₂), 1.73-1.64 (m, 16H; xanthene(CH₃)+CH₂), 1.35-1.22 (m, 102H; xanthene(t-butyl)+phenyl(t-

butyl)+CH₂), 0.89 (t, 6H; CH₃); ¹³C NMR (75 MHz, CDCl₃): 163.1, 162.9, 162.5, 162.4, 162.1, 161.6, 155.8, 155.6, 154.2, 152.9, 152.7, 152.6, 148.2 147.9, 147.7, 145.5, 145.1, 144.4, 143.8, 138.5, 135.5, 133.9, 133.2, 132.7, 132.3, 130.3, 130.2, 129.6, 129.5, 129.3, 129.0, 128.2, 127.7, 127.5, 127.4, 127.3, 127.0, 126.3, 125.2, 125.1, 125.0, 124.9, 124.7, 124.4, 124.1, 123.8, 123.6, 123.4, 123.3, 123.1, 122.9, 122.5, 122.4, 122.2, 121.5, 121.4, 119.4, 119.3, 118.1, 40.5, 34.8, 34.6, 34.4, 33.1, 32.3, 31.5, 31.4, 28.0, 26.8, 22.5, 14.0; MALDI-TOF: *m/z*: calcd: 3017.67 ; found: 3058.72 [M+K⁺]; Elemental analysis (%), calculated for $C_{202}H_{186}N_6O_{20}$: C 80.40, H 6.21, N 2.78; found: C 80.51, H 6.38, N 2.65.

 T_2 : By using a similar procedure to that for preparing T_1 , with 12 (241 mg, 0.2 mmol) instead of 9 as starting material, T_2 was synthesized. The product was purified by column chromatography on silica gel using chloroform as the eluent. After recrystallization from chloroform and methanol, T₂ was collected as a red solid (39.8 mg, 13%). M.p. > 300 °C; ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): 9.61(d, 1H; perylene), 9.58(d, 1H; perylene), 9.54(d, 2H; perylene), 9.50(d, 1H; perylene), 9.38 (d, 1H; perylene), 8.51 (d, 1H; perylene), 8.40(d, 2H; perylene), 8.37(d, 2H; perylene), 8.33(s, 1H; perylene), 8.21(s, 2H; perylene), 8.17(d, 1H; perylene), 8.16(s, 1H; perylene), 8.11(s, 1H; perylene), 7.50(s, 1H; perylene), 7.40(dd, 4H; xanthene), 7.35-7.28(m, 13H; phenoxyl+xanthene), 7.08-6.98(m, 10H; phenoxyl+xanthene), 6.92(d, 2H; phenyl), 6.82(d, 2H; phenyl), 6.74(s, 1H; xanthene), 6.62-6.58(m, 6H; phenoxyl+phenyl), 6.43(d, 2H; phenyl), 4.13 (m, 4H; NCH₂), 1.69-1.61 (m, 16H; xanthene(CH₃)+CH₂), 1.35-1.14 (m, 102H; xanthene(t-butyl)+phenyl(tbutyl)+CH₂), 0.89 (t, 6H; CH₃); ¹³C NMR (75 MHz, CDCl₃):163.4, 163.0, 162.7, 162.5, 162.4, 156.0, 155.8, 155.3, 155.1, 153.0, 152.7, 152.5, 152.3,

148.2, 148.1, 148.0, 147.9, 147.8, 147.5, 147.4, 145.7, 145.4, 145.2, 133.7, 133.4, 131.2, 130.6, 130.3, 130.0, 129.8, 129.7, 129.6, 129.3, 129.0, 128.8, 128.3, 127.9, 127.4, 127.2, 127.1, 125.3, 125.2, 124.9, 124.8, 124.5, 123.9, 123.8, 123.6, 123.5, 123.4, 123.3, 122.9, 122.1, 121.9, 121.7, 119.9, 119.4, 119.1, 118.6, 118.5, 110.6, 92.0, 91.8, 87.1, 40.6, 34.8, 34.5, 34.4, 34.2, 31.5, 31.4, 31.2, 31.1, 29.7, 28.0, 26.8, 26.7, 22.6, 14.1; MS (MALDI-TOF): m/z: calcd: 3065.71; found: 3065.17 [M]⁺; Elemental analysis (%), calculated for C₂₀₆H₁₈₆N₆O₂₀: C 80.71, H 6.12, N 2.74; found: C 80.59, H 6.24, N 2.65.

2. Copies of the ¹H NMR spectra, ¹³C NMR spectra and MALDI-TOF or ESI-MS spectra of the new compounds.

Figure S2. ¹³C NMR spectrum of compound 2 in CDCl₃

Figure S3. ESI-MS spectra of Compound 2.

Figure S4. ¹H NMR spectrum of compound 3 in CDCl₃

Figure S5. ¹³C NMR spectrum of compound 3 in CDCl₃

Figure S6. ESI-MS spectra of Compound 3.

Figure S8. ¹³C NMR spectrum of compound 5 in CDCl₃

Figure S9. ESI-MS spectra of Compound 5.

Figure S10. ¹H NMR spectrum of compound 8 in CDCl₃

Figure S11. ¹³C NMR spectrum of compound 8 in CDCl₃

Figure S12. ESI-MS spectra of Compound 8.

Figure S14. ¹³C NMR spectrum of compound 9 in CDCl₃

Figure S15. MALDI-TOF spectra of Compound 9.

Figure S16. ¹H NMR spectrum of compound 11 in CDCl₃

Figure S17. ¹³C NMR spectrum of compound 11 in CDCl₃

Figure S18. MALDI-TOF spectra of Compound 11.

Figure S19. ¹H NMR spectrum of compound 12 in CDCl₃

Figure S20. ¹³C NMR spectrum of compound 12 in CDCl₃

Figure S21. MALDI-TOF spectra of Compound 12.

Figure S22. ¹H NMR spectrum of compound D_1 in CDCl₃ (The four singlet peaks in the region of 7.8-8.4 ppm can be assigned to the protons at 2' positions of PDI ring, which show clearly that the compound is a pure compound, not a mixture of isomers).

Figure S23. ¹³C NMR spectrum of compound D_1 in CDCl₃

Figure S24. ¹H NMR, ¹³C NMR and MALDI-TOF spectra of **D**₁.

Figure S25. ¹H NMR spectrum of compound D_2 in CDCl₃

Figure S26. ¹³C NMR spectrum of compound D_2 in CDCl₃

Figure S27. MALDI-TOF spectra of D₂.

Figure S28. ¹H NMR spectrum of T_1 in CDCl₃

Figure S29. ¹³C NMR spectrum of compound T_1 in CDCl₃

Figure S30. MALDI-TOF spectra of T₁.

Figure S31. ¹H NMR spectrum of compound T₂ in CDCl₃

Figure S32. ¹³C NMR spectrum of compound T_2 in CDCl₃

Figure S33. MALDI-TOF spectra of T_2 .

3. Copies of the ¹H NMR spectra of the two isomers of H-aggregates.

Figure S34. Comparison of ¹H NMR spectra of the cis- and trans-isomers and their mixture of H-type PDI dimer in $CDCl_3$. Significant difference (in the region of red circles) between these two isomers can be identified at 1.8, 8.0-8.4, and 9.0-9.5 ppm. With this figure as reference, we can imagine that if all the new dimers (D₁ and D₂) and trimers (T₁ and T₂) are mixture of different isomers, the ¹H NMR spectra will be much complicated than they are presented in Figure S22 and S25.

4. Minimized structure of compound D_2 , T_1 and T_2 (hydrogen atoms are omitted for clarity).

Figure S35. Minimized structures of compounds D_2 , T_1 and T_2 (hydrogens are omitted for clarity).

5. The excitation spectra of D_1 , D_2 , T_1 and T_2

Figure S36. The excitation spectra of D_1 in toluene.

Figure S37. The excitation spectra of D_2 in toluene

Figure S38. The excitation spectra of T_1 in toluene

Figure S39. The excitation spectra of T_2 in toluene The excitation spectra of these compounds are found to be identical with their absorption respectively. This means there is no other emissive impurities in the samples and all these compounds are pure compounds, not a mixture of isomers.

Figure S40. The split transient fluorescence spectra of D_2 . (red, component with long lifetime; green, component with short lifetime).

Figure S41. The split transient fluorescence spectra of $T_{1.}$ (red, component with long lifetime; green, component with short lifetime).

7. The absorption and fluorescence spectra of D_1 , D_2 , T_1 and T_2 in CH_2Cl_2 .

Figure S42. The absorption spectra of D_1 , D_2 , T_1 and T_2 in CH_2Cl_2 .

Figure S43. The fluorescence spectra of D_1 , D_2 , T_1 and T_2 in CH_2Cl_2 .

8. The fitting of the fluorescence decay curves of D_1 , D_2 , T_1 and T_2 in toluene.

Figure S45. The kinetic of emission decays of D₂.

Figure S46. The kinetic of emission decays of T_1 .

Figure S47. The kinetic of emission decays of T_2 .

9. HPLC analysis of D_1 , D_2 , T_1 and T_2 .

Figure S48. HPLC chromatogram of D₁.

Figure S49. HPLC chromatogram of $D_{2.}$

Figure S50. HPLC chromatogram of T₁.

Figure S51. HPLC chromatogram of T₂.

Figure S52. The ¹H NMR spectra of N,N'-di(cyclohexyl)perylene-3,4:9,10-tetracarboxylic diimide (pure 1,7-isomer). The crude material is pure 1,7-isomer, so the dimers and trimers have no 1,6-isomers.

Reference

- S1 A. Z. Weller, Phys. Chem., 1982, 133, 93-98.
- S2 L. E. Sinks, B. Rybtchinski, M. Iimura, B. A. Jones, A. J. Goshe, X. Zuo,
 D. M. Tiede, X. Li and M. R. Wasielewski, *Chem. Mater.*, 2005, 17, 6295-6303.
- S3 M. J. -L. Tschan, E. J. Garcia-Suarez, Z. Freixa, H. Launay, H. Hagen; Benet- J. Buchholz and P. W. N. M. Leeuwen, *J. Am. Chem. Soc.*, 2010, 132, 6463-6473.
- S4 S. M. Dirk, D. W. Price, S. H. Chanteau, D. V. Kosynkin and J. M. Tour, *Tetrahedron*, 2001, **57**, 5109-5121.

- S5 (a) V. Percec, D. Schlueter, J. C. Ronda, G. Johansson, G. Ungar and J. P. Zhou, *Macromolecules*, 1996, 29, 1464-1473; (b) B. Xu and T. M. Swager, *J. Am. Chem. Soc.*, 1993, 115, 1159-1160.
- S6 B. H. Han, D. H. Shin and S. Y. Cho, *Tetrahedron Lett.*, 1985, 26, 6233-6234.
- S7 F. Maya, S. H. Chanteau, L. Cheng, M. P. Stewart and J. M. Tour, *Chem. Mater.*, 2005, 17, 1331-1345.