Ab initio Molecular Dynamics Simulations of Aqueous Triflic Acid Confined in Carbon Nanotubes

Jeffrey K. Clark II, ${ }^{\dagger}$ Bradley F. Habenicht, ${ }^{\ddagger}$ and Stephen J. Paddison ${ }^{\dagger, *}$
${ }^{\dagger}$ Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
\#School of Natural Sciences, University of California, Merced, CA 95343

Supplementary Information

Table S1. Hydrogen bond data for the optimized 14N3 system using different methods.

	Avg. $\mathrm{O} \cdots \mathrm{O}$ Distance (\AA)		Avg. $\mathrm{H} \cdots \mathrm{O}$ Distance (\AA)		Avg. $\|\delta\|(\AA)^{+}$	
Functional	$\mathrm{H}_{2} \mathrm{O} / \mathrm{SO}_{3} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{SO}_{3} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{SO}_{3} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$
PBE	2.65	2.56	1.65	1.53	0.64	0.49
PBE0	2.64	2.55	1.66	1.54	0.67	0.51
HSEsol	2.64	2.55	1.66	1.54	0.67	0.51
PBE-D3	2.65	2.57	1.66	1.53	0.65	0.49
optB86	2.67	2.58	1.67	1.54	0.66	0.50

${ }^{\dagger}$ The value of δ always has water molecules/solvated protons as the hydrogen bond donor.

Table S2. Hydrogen bond data for the optimized 17F3 system using different methods.

	Avg. $\mathrm{O} \cdots \mathrm{O}$ Distance (\AA 足		Avg. $\mathrm{H} \cdots \mathrm{O}$ Distance (\AA)		Avg. $\|\delta\|(\AA)^{+}$	
Functional	$\mathrm{H}_{2} \mathrm{O} / \mathrm{SO}_{3} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{SO}_{3} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{SO}_{3} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$
PBE	2.72	2.51	1.75	1.42	0.75	0.32
PBE-D3	2.73	2.51	1.76	1.42	0.77	0.32
optB86	2.75	2.52	1.77	1.43	0.78	0.33

${ }^{\dagger}$ The value of δ always has water molecules/solvated protons as the hydrogen bond donor.

Table S3. 14N3 dissociation data from sample MD runs using PBE and PBE-D2. ${ }^{\dagger}$

Functional	Bound	Shared: $\mathrm{SO}_{3} \mathrm{H} / \mathrm{SO}_{3} \mathrm{H}$	Shared: $\mathrm{SO}_{3} \mathrm{H} / \mathrm{H}_{2} \mathrm{O}$	Dissociated: Zundel	Dissociated: $\mathrm{H}_{3} \mathrm{O}^{+}$
PBE	-	-	0.025	0.276	0.699
PBE-D2	-	-	0.026	0.286	0.688

[^0]
(b) 17F2

Figure S1. Snapshots showing ring formation in (a) 17N2 and (b) 17F2.
(a) 14 N 3

(b) 17 N 3

(c) 17F3

Figure S2. Snapshots showing ring formation in (a) 14N3, (b) 17N3 showing a 5membered ring (top) and a 9-membered ring, and (c) 17F3 showing a 4-membered ring (top) and an 8-membered ring (bottom).
(a) 14 N 1

(b) 17 N 1

(d) 17 N 3

Figure S3. Snapshots of the bare CNT systems that contained OH $\cdots \mathrm{F}$ hydrogen bond between water molecules and a fluorine atom of triflic acid over 15\% of the time: (a) 14N1,
(b) 17 N 1, (c) 17 N 2 , and (d) 17 N 3 .
(a) 14 F 1

(b) 14 F 2

(c) 14 F 3

Figure S4. Snapshots of hydrogen bonding to the fluorinated wall in the smaller CNT systems: (a) 14F1, (b) 14F2, and (c) 14F3.

Figure S5. Snapshots of hydrogen bonding to the fluorinated wall in the larger CNT systems: (a) 17F1, (b) 17F2, and (c) 17F3.

[^0]: ${ }^{+}$Data represents fraction of time spent in the different states

