Supporting Information

Development of high power and energy density microsphere silicon carbide/nanoneedle MnO₂ and thermally oxidized activated carbon asymmetric electrochemical supercapacitors

By Myeongjin Kim and Jooheon Kim* *Corresponding author: Prof. Jooheon Kim School of Chemical Engineering & Materials Science, Chung-Ang University, Seoul 156-756, Korea Phone: +82-2-820-5763 Fax: +82-2-824-3495 E-mail: jooheonkim@cau.ac.kr

Figure S1. (a) Variation of the specific capacitance of SiC/N-MnO₂ electrode as a function of N-MnO₂/SiC feeding ratio at a scan rate of 10 mV s⁻¹. (b) TGA curves of HF-SiC, H₂O₂-SiC, SiC/N-MnO₂(0.5), SiC/N-MnO₂(1), SiC/N-MnO₂(3), SiC/N-MnO₂(5), SiC/N-MnO₂(7) and N-MnO₂. (c) Weight fractions of N-MnO₂ in SiC/N-MnO₂ composite as a function of N-MnO₂/SiC feeding ratio.

(d) Specific capacitance of SiC and SiC/N-MnO₂(5) electrodes at different scan rates.

Figure S1(a) represents the specific capacitance as a function of the different feeding ratios of SiC/N-MnO₂ composites (1/0.5, 1/1, 1/3, 1/5, and 1/7) and the samples are denoted as SiC/N-

MnO₂(1), SiC/N-MnO₂(3), SiC/N-MnO₂(5) and SiC/N-MnO₂(7) for the feeding ratios 1/0.5, 1/1, 1/3, 1/5 and 1/7, respectively. The specific capacitances of the SiC/N-MnO₂ electrodes gradually increased as the ratio of nanoneedle MnO₂/SiC increased from 0.5 to 5. Nevertheless, no obvious difference can be found when the ratio is higher than 5, indicating that they have nearly the same specific capacitance. The reason is that the density of the oxygen-containing functional groups on the SiC surface is limited to provide reactive sites between the SiC and nanoneedle MnO₂, and this was confirmed by the TGA analysis. Figure S1(b) provides representative TGA curves for HF-SiC, H₂O₂-SiC, SiC/N-MnO₂(0.5), SiC/N-MnO₂(1), SiC/N-MnO₂(3), SiC/N-MnO₂(5), SiC/N-MnO₂(7) and N- MnO_2 . The experiments were performed at temperatures up to 800 °C under air flow at a heating rate of 10 °C min⁻¹. Under these conditions, HF-SiC exhibits only 0.4 % weight loss, whereas H₂O₂-SiC starts to lose mass upon heating below 100 °C due to the adsorbed water and shows a significant decrease in mass around 215 °C because of the evolution of CO and CO₂ from H₂O₂-SiC caused by the destruction of oxygenated functional groups.^[1] Moreover, nanoneedle MnO₂ was converted into Mn₂O₃ and exhibited 14.7 % weight loss.^[2] The weight losses of HF-SiC, H₂O₂-SiC, SiC/N-MnO₂(0.5), SiC/N-MnO₂(1), SiC/N-MnO₂(3), SiC/N-MnO₂(5), SiC/N-MnO₂(7) and N-MnO₂ were 0.4%, 5.3%, 8.11%, 10.39%, 12.75%, 13.12%, 13.41% and 14.7%, respectively. Accordingly, the weight fraction of N-MnO₂ in SiC/N-MnO₂ composite for SiC/N-MnO₂(0.5), SiC/N-MnO₂(1), SiC/N-MnO₂(3), SiC/N-MnO₂(5) and SiC/N-MnO₂(7) were derived as 29.8%, 54.1%, 79.3%, 83.2% and 86.2%, respectively. Figure S1(c) shows the weight fractions of N-MnO₂ in SiC/N-MnO₂ composite and their behavior as a function of the different N-MnO₂/SiC feeding ratio. Interestingly, the weight fractions of N-MnO₂ gradually increase as the ratio of N-MnO₂/SiC increases from 0.5 to 5. Nevertheless, no obvious difference can be found when the weight fractions of N-MnO₂ is higher than 5, as in the case of SiC/N-MnO₂(5) and SiC/N-MnO₂(7) composites, indicating that they have nearly the similar weight fractions of N-MnO₂, which is in accordance with their specific capacitance behavior. Moreover, the rate capability is an important factor for the use of supercapacitors in power applications. A good electrochemical energy storage device is required to provide its high energy density at a high charge/discharge rate. Figure S1(d) shows the specific capacitance of SiC and

SiC/N-MnO₂(5) electrodes at various scan rates. SiC/N-MnO₂(5) electrode not only exhibits high specific capacitance values from 279.8 to 228.2 F g⁻¹ as the scan rates increase from 5 to 500 mV s⁻¹, but also maintain 81.5 % of specific capacitance retention. As a results, the excellent rate capability in the SiC/N-MnO₂(5) electrode can be attributed to the reduced short diffusion path of ions, high activated surface and increased electrical conductivity.

Figure S2.

Figure S2. (a) XPS deconvoluted C 1s spectrum of AC0. (b) XPS deconvoluted C 1s spectrum of AC1. (c) XPS deconvoluted C 1s spectrum of AC3. (d) XPS deconvoluted C 1s spectrum of AC6. (e) XPS deconvoluted C 1s spectrum of AC8. (f) XPS deconvoluted C 1s spectrum of AC10.

	Fitting of the C 1s peak Binding energy [eV] (relative atomic percentage [%])			
	C-C/C=C	C-O	C=O	O=C-OH
AC0	284.7	286.5	288.1	289
	(84.2)	(7.2)	(3.5)	(5.1)
AC1	284.7	286.5	288.1	289
	(81.2)	(7.4)	(6.2)	(5.2)
AC3	284.7	286.5	288.1	289
	(76.9)	(8.1)	(9.8)	(5.2)
AC6	284.7	286.5	288.1	289
	(73.5)	(7.9)	(11.7)	(6.9)
AC8	284.7	286.5	287.8	289
	(60.4)	(12.7)	(17.5)	(9.4)
AC10	284.7	286.4	287.9	289.1
	(57.1)	(13.9)	(19.1)	(9.1)

Table S1. The C 1s peak position and the relative atomic percentages of various functional groups inAC0, AC1, AC3, AC6, AC8 and AC10.

References

- 1 C. Xu, X. Wang, J. Zhu, X. Yang and L. Lu, J. Mater. Chem., 2008, 18, 5625.
- 2 L. Mao, K. Zhang, H. Chan and J. Wu, J. Mater. Chem., 2012, 22, 1845