Supporting Information

Construction of 3DV₂O₅/hydrogenated-WO₃Nanotrees on Tungsten Foil for High-performance Pseudocapacitors

Fengmei Wang,^a Yuanchang Li,^a Zhongzhou Cheng,^b Kai Xu,^a Xueying Zhan,^a Zhenxing Wang^a and Jun He^{*a}

Received (in XXX, XXX) XthXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Fig. S1. SEM image of the WO3 nanotrees on W foil after hydrogenation at 450 °C.

Fig. S2. High-resolution O1s XPS spectra of pristine WO₃ and WO₃ prepared at 550 °C.

Areal capacitance calculated from CV curves

The areal capacitances of electrodes measured by cyclic voltammetry (CV) method were calculated based on the following equation: 1, 2

$$C_{\rm a} = \frac{1}{SV(E_{\rm c} - E_{\rm a})} \int_{E_{\rm a}}^{E_{\rm c}} I(E) dE$$
(S1)

Where C_a (mF cm⁻²) is the areal capacitance, V is the potential scan rate (mV s⁻¹), E_a is the anodic potential (V), E_c is the cathodic potential (V), I(E) is the response current (A), E is the potential (V) and S (cm⁻²) is the effective area of the working electrode.

Areal and specific capacitance of V₂O₅/H-WO₃ composites calculated

from discharge curves

The areal and specific capacitances of electrodes measured by galvanostatic charge/discharge (GCD) method were calculated based on the following equation:³

$$C_{a} = \frac{I \Delta t}{S \Delta E}$$

$$C_{s} = \frac{I \Delta t}{1000 * m \Delta E}$$
(S2)

(S3)

Where C_a (mF cm⁻²) and C_s (F/g) are the areal capacitance and specific capacitance, I (mA) is the constant discharging current, Δt (s) is the discharging time, ΔE (V) is the potential window, S (cm⁻²) and m (g) are the surface area and the mass of V₂O₅.

The calculation of the device

The volumetric capacitances of the device measured by galvanostatic charge/discharge (GCD) method were calculated based on the following equation

$$C_{V} = \frac{I\Delta t}{V\Delta E}$$
(S4)

Where C_v (mF cm⁻³) volumetric capacitance, I (mA) is the constant discharging current, Δt (s) is the discharging time, ΔE (V) is the potential window, V (cm⁻³) is the volume of all solid-stated device.

The energy and power density of the device were calculated from the following equation: ⁴⁻⁶

$$E = \frac{C_v \Delta E^2}{2} \tag{S5}$$

$$P = \frac{E}{t}$$
(S6)

Where C_v is the volumetric capacitance of the device, ΔE is the cell voltage, t is the discharge time.

Fig. S3. (a) Galvanostatic charge/discharge curves of H-WO₃ (450 °C) electrode at various current density. The effective area of electrode is 1.5 cm^2 . (b) CV curves of the H-WO₃ electrode at the 1st and 2500th cycles at a scan rate of 100 mV s⁻¹.

Fig. S4. (a) Cyclic voltammograms of the sample with 15 cycles of V_2O_5 electrodeposition (the inset is HRTEM of V_2O_5 film). (b) CV curves collected at a scan rate of 10 mV s⁻¹ for WO₃, H-WO₃, V_2O_5/WO_3 and $V_2O_5/H-WO_3$ samples. (c) EIS spectra of WO₃, H-WO₃, V_2O_5/WO_3 and $V_2O_5/H-WO_3$ electrodes. (d) Areal capacitances calculated for WO₃, H-WO₃, V_2O_5/WO_3 and $V_2O_5/H-WO_3$ electrodes as a function of current densities.

Fig. S5. (a)The photo of the solid-state devices with the effective areal of 1.5 cm². (b) Volumetric capacitances calculated from the galvanostatic charge-discharge curves as a function of current densities.

Table S1. Comparison of the specific capacitance, energy density and power density of our single electrode with the literature values (only based on mass of V₂O₅). "-" means that the data was not given in the reference. $\left(E = \frac{C_s \Delta E^2}{2}, P = \frac{E}{t}, C_s\right)$ is the specific capacitance of the single electrode,

Electrode	Specific capacitance (C _s / F g ⁻¹)	Energy density (E,/ Wh kg ⁻¹)	Power density (P/ W kg ⁻¹)	Reference
$V_2O_5\cdot 0.6H_2O$	180.7	20.3	2000	7
V_2O_5 film	1308	45	156	8
V_2O_5 nanosheets	451	107	9400	9
V ₂ O ₅ /rGO	320	-	-	10
V ₂ O ₅ nanotube	-	11.6	1200	11
$V_2O_5/H-WO_3$	1101	98	1538	Our study

which is measured in three-electrode system)

- H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong and G. W. Yang, *Nat Commun*, 2013, 4, 1894.
- 2. X. Fan, Y. Lu, H. Xu, X. Kong and J. Wang, J. Mater. Chem., 2011, 21, 18753.
- 3. X. H. Lu, Nano Lett., 2012, 12, 1690-1696.
- 4. X. Xiao, Adv. Energy Mater., 2012, 2, 1328-1332.
- 5. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong and Z. L. Wang, ACS Nano, 2013, 7, 2617-2626.
- Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li and F. Wei, *Advanced Functional Materials*, 2011, 21, 2366-2375.
- 7. Q. T. Qu, Y. Shi, L. L. Li, W. L. Guo, Y. P. Wu, H. P. Zhang, S. Y. Guan and R. Holze, *Electrochemistry Communications*, 2009, **11**, 1325-1328.
- A. Ghosh, E. J. Ra, M. Jin, H.-K. Jeong, T. H. Kim, C. Biswas and Y. H. Lee, *Advanced Functional Materials*, 2011, 21, 2541-2547.
- 9. J. Zhu, L. Cao, Y. Wu, Y. Gong, Z. Liu, H. E. Hoster, Y. Zhang, S. Zhang, S. Yang, Q. Yan, P. M. Ajayan and R. Vajtai, *Nano letters*, 2013, **13**, 5408-5413.
- 10. H. Zhang, A. Xie, C. Wang, H. Wang, Y. Shen and X. Tian, Chemphysche., 2014, 15, 366-373...
- 11. S. D. Perera, B. Patel, J. Bonso, M. Grunewald, J. P. Ferraris and K. J. Balkus, Jr., ACS applied materials & interfaces, 2011, 3, 4512-4517.