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Fig. S1. SEM image of the WO3 nanotrees on W foil after hydrogenation at 450 oC.

Fig. S2. High-resolution O1s XPS spectra of pristine WO3 and WO3 prepared at 550 oC.
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Areal capacitance calculated from CV curves
 The areal capacitances of electrodes measured by cyclic voltammetry (CV) method were 
calculated based on the following equation: 1, 2
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Where Ca (mF cm-2) is the areal capacitance, V is the potential scan rate (mV s-1), Ea is the anodic 
potential (V), Ec is the cathodic potential (V),I (E) is the response current (A), E is the potential (V) 
and S (cm-2) is the effective area of the working electrode. 

Areal and specific capacitance of V2O5/H-WO3 composites calculated 

from discharge curves
The areal and specific capacitances of electrodes measured by galvanostatic charge/discharge 

(GCD) method were calculated based on the following equation:3
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 Where Ca (mF cm-2) and Cs (F/g) are the areal capacitance and specific capacitance, I (mA) is the 
constant discharging current, △t (s) is the discharging time, △E  (V) is the potential window, S 
(cm-2) and m (g) are the surface area and the mass of V2O5.

The calculation of the device 
The volumetric capacitances of the device measured by galvanostatic charge/discharge (GCD) 
method were calculated based on the following equation
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Where Cv (mF cm-3) volumetric capacitance, I (mA) is the constant discharging current, △t (s) is 
the discharging time, △E  (V) is the potential window, V (cm-3) is the volume of all solid-stated 
device. 
The energy and power density of the device were calculated from the following equation: 4-6
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Where Cv is the volumetric capacitance of the device, △E is the cell voltage, t is the discharge 
time. 



Fig. S3. (a) Galvanostatic charge/discharge curves of H-WO3 (450 oC) electrode at various current 
density. The effective area of electrode is 1.5 cm2. (b) CV curves of the H-WO3 electrode at the 1st 
and 2500th cycles at a scan rate of 100 mV s-1.

Fig. S4. (a) Cyclic voltammograms of the sample with 15 cycles of V2O5 electrodeposition 
(the inset is HRTEM of V2O5 film). (b) CV curves collected at a scan rate of 10 mV s-1 for 
WO3, H-WO3, V2O5/WO3 and V2O5/H-WO3 samples. (c) EIS spectra of WO3, H-WO3, 
V2O5/WO3 and V2O5/H-WO3 electrodes. (d) Areal capacitances calculated for WO3, H-WO3, 
V2O5/WO3 and V2O5/H-WO3 electrodes as a function of current densities.
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Fig. S5. (a)The photo of the solid-state devices with the effective areal of 1.5 cm2. (b) Volumetric 
capacitances calculated from the galvanostatic charge-discharge curves as a function of current 
densities.

Table S1. Comparison of the specific capacitance, energy density and power density of our single 
electrode with the literature values (only based on mass of V2O5). “-” means that the data was not 

given in the reference. ( , , Cs is the specific capacitance of the single electrode, 
2

2
s EC

E
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which is measured in three-electrode system)

Electrode Specific 
capacitance

 (Cs/ F g-1) 

Energy 
density

(E,/ Wh kg-1) 

Power 
density 

(P/ W kg-1) 

Reference 

V2O5 ·0.6H2O 180.7 20.3 2000 7

V2O5 film 1308  45 156 8

V2O5 nanosheets 451 107 9400 9

V2O5/rGO 320 - - 10

V2O5 nanotube - 11.6 1200 11

V2O5/H-WO3 1101 98 1538 Our study 
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