SUPPORTING INFORMATION FOR:

On the versatility of metallacycles in Host-Guest Chemistry. Interactions in Halide-

centered hexanuclear copper (II) pyrazolate complexes.

Figure S1. Representation of the quadrupole moment tensor (Θ) for a representative Cu (II) center, in the hypothetical noble gases-centered pyrazolate complexes 1-Ne, 1-Ar, 1-Kr and 1-Xe.

Figure S2 Representation of the magnetic response, showing the bond critical points of the Cu_6 -Cl interaction.

 Table S1. Energy decomposition Analysis under the TPSS/ZORA level for 1-Cl

 considering acetonitrile as solvent (kcal/mol).

Table S2. Selected calculated distances and angles of the 1-Ne, 1-Ar, 1-Kr and 1-Xe complexes (Å).

 Table S3. Energy Decomposition Analysis of the 1-Ne, 1-Ar, 1-Kr and 1-Xe complexes (kcal/mol).

Table S4. Energy Decomposition Analysis under the PBE/ZORA level for some relevant studied systems (kcal/mol).

Table S5. Principal components of the electronic quadrupole tensors of a representative Cu (II) center and the guests, at the PBE/ZORA level for some relevant studied systems (Buckinghams).

Table S6. Comparison of the performance of several hybrid, GGA, and meta-GGA functionals in the calculation of the Electronic Quadrupole Tensors of the different noble-gas guests, denoting on the principal axis system (Buckinghams).

Figure S1. Representation of the quadrupole moment tensor (Θ) for a representative Cu (II) center, in the hypothetical noble gases-centered pyrazolate complexes 1-Ne, 1-Ar, 1-Kr and 1-Xe.

Figure S2. Representation of the magnetic response, showing the bond critical points of the Cu_6 -Cl interaction.

 Table S1. Energy decomposition Analysis under the TPSS/ZORA level for 1-Cl considering acetonitrile as solvent (kcal/mol).

	1-Cl						
ΔE_{orb}	-34.15	25.72%					
ΔE_{elec}	-91.09	68.60%					
ΔE_{disp}	-7.54	5.68%					
ΔE_{Pauli}	58.23						
ΔE_{int}	-74.55						

Table S2. Selected calculated distances and angles of the 1-Ne, 1-Ar, 1-Kr and 1-Xecomplexes (Å).

$[trans-Cu_6{\mu-3,5-(CF_3)_2pz}_6(\mu-OH)_6Ng], Ng = Ar, Kr, Xe$								
	1-Ne	1-Ar	1-Kr	1-Xe				
Diam. Cu ₆	6.405	6.441	6.447	6.489				
Cu–Cu	3.203	3.220	3.224	3.245				
Cu…(center of the cavity)	3.203	3.220	3.224	3.245				
H…(center of the cavity)	3.619	3.646	3.666	3.694				
(Cu ₆ plane)–(Cu-N-N- Cu plane) angle	118	117	117	116				
(Cu ₆ plane)–(Cu-O-Cu plane) angle	114	116	116	117				

Table S3. Energy Decomposition Analysis of the 1-Ne, 1-Ar, 1-Kr and 1-Xe complexes

 under the TPSS/ZORA level (kcal/mol).

	1-Ne		1-Ar		1-1	Kr	1-Xe	
ΔE_{orb}	-0.15	2.19%	-3.54	15.0%	-5.87	16.0%	-11.24	18.4%
ΔE_{elec}	-2.89	42.19%	-11.70	49.7%	-20.82	56.7%	-38.07	62.3%
ΔE_{disp}	-3.81	55.62%	-8.30	35.3%	-10.03	27.3%	-11.80	19.3%
ΔE_{Pauli}	4.12		22.99		40.10		67.16	
ΔE_{int}	-2.73		-0.55		3.38		6.05	

Table S4. Energy Decomposition Analysis under the PBE/ZORA level for some relevant studied systems (kcal/mol).

	1-	1-Cl 1-Br		1 -I		1-Ar		1-Kr		1-Xe		
ΔE_{orb}	-33.86	25.0%	-31.95	19.0%	-33.30	15.8%	-4.77	20.2%	-6.77	18.6%	-9.90	17.1%
ΔE_{elec}	-96.27	71.0%	-129.63	77.1%	-170.31	80.6%	-12.83	54.4%	-22.57	61.9%	-39.73	68.6%
ΔE_{disp}	-5.43	4.0%	-6.52	3.9%	-7.71	3.6%	-5.99	25.4%	-7.13	19.6%	-8.28	14.3%
ΔE_{Pauli}	59.46		98.65		154.30		21.94		36.82		64.51	
ΔE_{int}	-76.10		-69.45		-57.02		-1.65		0.35		6.60	

Table S5. Principal components of the electronic quadrupole tensors of a representative Cu (II) center and the guests, at the PBE/ZORA level for some relevant studied systems (Buckinghams).

		C	u			2	X	
	Θ_{11}	Θ_{22}	Θ_{33}	Θ_{aniso}	Θ_{11}	Θ_{22}	Θ ₃₃	Θ_{aniso}
1	0.241	0.053	-0.294	-0.441	-	-	-	-
1-Cl	0.395	-0.160	-0.235	-0.353	0.193	0.193	-0.385	-0.578
1-Br	0.421	-0.154	-0.267	-0.401	0.121	0.121	-0.242	-0.363
1- I	0.558	-0.147	-0.411	-0.617	1.357	1.357	-2.714	-4.071
1-Ar	0.227	0.076	-0.304	-0.456	0.025	0.025	-0.050	-0.075
1-Kr	0.287	0.006	-0.293	-0.440	0.044	0.044	-0.088	-0.132
1-Xe	0.435	-0.091	-0.344	-0.516	0.574	0.574	-1.149	-1.723

Table S6. Comparison of the performance of several hybrid, GGA, and meta-GGA functionals in the calculation of the Electronic Quadrupole Tensors of the different noble-gas guests, denoting on the principal axis system (Buckinghams).

$[trans-Cu_6 \{\mu-3,5-(CF_3)_2 pz\}_6 (\mu-OH)_6 Ng], Ng = Ar, Kr, Xe$										
	1-Ar				1-Kr		1-Xe			
	Θ_{11}	Θ_{22}	Θ_{33}	Θ_{11}	Θ_{22}	Θ_{33}	Θ_{11}	Θ_{22}	Θ_{33}	
B1LYP	0.0174	0.0174	-0.0349	0.0335	0.0335	-0.0669	0.5271	0.5271	-1.0543	
B3LYP	0.0189	0.0189	-0.0378	0.0359	0.0359	-0.0718	0.5390	0.5390	-1.0780	
O3LYP	0.0205	0.0205	-0.0410	0.0383	0.0361	-0.0744	0.5610	0.5637	-1.1247	
BP86	0.0265	0.0265	-0.0529	0.0453	0.0453	-0.0906	0.5720	0.5720	-1.1441	
PW91	0.0251	0.0251	-0.0503	0.0431	0.0431	-0.0861	0.5696	0.5696	-1.1392	
PBE	0.0252	0.0252	-0.0504	0.0442	0.0442	-0.0885	0.574	0.574	-1.490	
PBE0	0.0252	0.0252	-0.0504	0.0442	0.0442	-0.0885	0.5745	0.5745	-1.1490	
M06L	0.0195	0.0195	-0.0389	0.0424	0.0424	-0.0847	0.4779	0.4779	-0.9557	
TPSS	0.024	0.024	-0.049	0.041	0.041	-0.082	0.565	0.565	-1.130	