

Electronic Supplementary Information

Imidazolium-Based Ionic Liquids with Different Fatty Acid Anions: Phase Behavior, Electronic Structure and Ionic Conductivity Investigation

Mrinmoy Biswas^a, Madhab Dule^a, Pabitra N Samanta^b, Sharmistha Ghosh^c and Tarun K. Mandal^{a,*}

^a*Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India*

^b*Department of Chemistry, Physical Chemistry Section, Jadavpur University, Kolkata 700 032, India*

^c*Department of Material Science, Indian Association for the a Cultivation of Science, Jadavpur, Kolkata 700 032, India*

Synthesis of imidazolium-based ionic liquids of different long alkyl chain containing fatty acid anions. A series of different chain length of fatty acids, fatty acid-ascorbic acid and fatty acid-amino acid conjugates such as (C₁₇H₃₅-CO₂H/ C₁₅H₃₁-CO₂H/ C₁₃H₂₇-CO₂H and C₁₅H₃₁-As-OH/C₁₅H₃₁-Trp-OH respectively) were utilized to prepare 1-alkyl-3-methylimidazolium based ionic liquids. The synthesis involved first the preparation of 1-alkyl-3-methylimidazolium bromide ionic liquid from 1-methylimidazole and 1-bromoalkane using microwave heating. 1-Alkyl-3-methylimidazolium bromides ILs were then converted into their corresponding hydroxide through ion exchange. The final ionic liquids were prepared by the neutralization 1-alkyl-3-methylimidazolium hydroxide with fatty acids and fatty acid conjugates.

Synthesis of 1-alkyl-3-methylimidazolium bromide. In a typical synthesis of 1-butyl-3-methylimidazolium bromide [BMIM][Br], an homogeneous mixture of 1-methylimidazole (10 mm) and 1-bromobutane (10 mm) was heated intermittently in an unmodified household MW oven (Haier HR 2485EG 230V-50 Hz) at 340 W (40 s irradiation with 10 s mixing) until a clear single phase was obtained. The bulk temperature recorded was in the range of 70 °C. The resulting yellowish viscous compound was then cooled, repeatedly washed with diethyl ether (3 x 10 mL) to remove unreacted components. Purified waxy product was dried under vacuum at 80 °C and characterized by 300 MHz ¹H NMR spectroscopy (CDCl₃) and ESI mass spectroscopy. Similarly, we have also prepared 1-decyl-3-methylimidazolium bromide [DMIM][Br].

[BMIM][Br]: ^1H NMR (300 MHz, CDCl_3 , TMS): δ = 10.25 (s, imidazole ring H), 7.61 (s, imidazole ring H), 7.49 (s, imidazole ring H), 4.37–4.32 (t, $J=7.5$ Hz, - NCH_2), 4.15 (s, - NCH_3), 1.96–1.86 (m, - CH_2), 1.43–1.36 (m, - CH_2), 0.99–0.94 ppm (t, $J=7.3$ Hz, - CH_3).

MS (35eV): m/z: 139 (BMIM $^+$ 100%).

[DMIM][Br]: ^1H NMR (300 MHz, CDCl_3 , TMS): δ = 10.61 (s, 1 H), 7.31 (s, 1 H), 7.24 (s, 1 H), 4.34–4.29 (t, $J=7.4$ Hz, 2 H), 4.13 (s, 3 H), 1.92 (m, 2 H), 1.25 (bs, 14H), 0.90–0.85 ppm (t, $J=6.3$ Hz, 3H). MS (35 eV): m/z: 223 (DMIM $^+$ 100%).

Synthesis of 1-alkyl-3-methylimidazolium bromide [BMIM][OH]. 1-Alkyl-3-methylimidazolium hydroxides were prepared by passing the corresponding aqueous 1-alkyl-3-methylimidazolium bromide solution (5 mM) through anion exchange resin (Amberlite IRA-400Cl, Aldrich). For this, a glass column was first packed with the resin followed by washing with plenty of water. The column was charged with an aqueous NaOH solution (2 M) to modify the resin beads with hydroxide ions. The column was then washed thoroughly with water to remove any traces of unexchanged hydroxide ion (tested with Litmus paper). Finally, an aqueous solution of 1-alkyl-3-methylimidazolium bromide was passed through the column to exchange the bromide ions with hydroxide ions. The exchange reaction was confirmed by means of thin layer chromatography (TLC).

Synthesis of methyl ester of tryptophan ($\text{H}_2\text{N-Trp-OMe}$). First, 20 mmol of tryptophan (3.62 gm) was dissolved in of 20 mL ice cold dry methanol containing 2 mL SOCl_2 and allowed to stand for 8h to obtain the chloride salt of methyl ester ($\text{Cl}^-\text{NH}_3^+ \text{-Trp-OMe}$). The subsequent neutralization of these compounds with saturated Na_2CO_3 solution and extraction with ethyl acetate results the required $\text{H}_2\text{N-Trp-OMe}$. Using this purified ester, the following methyl esters of amphiphiles were synthesized.

Synthesis of methyl ester of fatty acid-trptophan conjugate ($\text{C}_{15}\text{H}_{31}\text{-Trp-OMe}$): The methyl ester of tryptophan was coupled with palmitic acid by using DCC and HOBr. Typically, 12 mmol of palmitic acid (3.5 g) is taken in DCM (10 ml) and cooled in an ice-water bath. DCM solution of purified methyl ester of tryptophan (10 mmol) was then added separately to this fatty acid solution. Finally, DCC (2.06 g, 10 mmol) and HOBr (0.135 g, 1 mmol) were added consecutively to the reaction mixture and stirred magnetically for 3 days. Final reaction mixture, collected in ethyl acetate (30 ml) was filtered through sintered funnel to remove the formed

dicyclohexyl urea (DCU). The filtrate containing the actual compound was washed with 2N HCl (3 × 20 mL), brine (1 × 20 mL), saturated sodium carbonate (3 × 20 mL), water (1 × 20 mL) and finally dried over anhydrous sodium sulfate. The crude compound was isolated by evaporating the solvent in rotary evaporator and finally dried under vacuum. Final purification was done on a silica gel column (100-200 mesh) using mixture of ethyl acetate and toluene as eluent. C₁₅H₃₁-Trp-OMe is finally characterized through ESI mass spectroscopy, 300 MHz ¹H NMR spectroscopy, the details of which are given below.

C₁₅H₃₁-Trp-OMe: ¹HNMR (300MHz, CDCl₃, TMS): δ = 8.06 (s, 1H, Trp ring -NH), 7.54-7.52 (d, 1H, J = 6, Trp ring H), 7.37-7.34 (d, 1H, J = 6, Trp ring H), 7.21-7.08 (m, 1H, Trp ring Hs), 6.97-6.96 (d, 1H, J = 3, Trp ring H), 5.94-5.92 (d, 1H, J = 6, amide -NH), 5.00-4.94 (m, 1H, Trp C^aH), 3.69 (s, 3H, OCH₃), 3.33-3.31(d, 2H, J=6, Trp C^B Hs) 2.16-2.11 (t, 2H, J = 9, -CO-CH₂), 1.56 (br., 6H, -CH₂), 1.25 (br. 20H, -(CH₂)₇-), 0.90-0.85 (t, 3H, J = 9, -CH₃).

MS (35 eV): m/z (%): 372 [M+Na⁺]

Synthesis of fatty acid-tryptophan conjugate (C₁₅H₃₁-Trp-OH). Finally, for the synthesis of tryptophan based amphiphile (C₁₅H₃₁-Trp-OH), an aqueous NaOH (10 mL, 2N) solution was added dropwise to the methanolic solution (25 mL) of purified ester of amphiphile (C₁₅H₃₁-Trp-OMe) and the progress of this basic hydrolysis was monitored via thin layer chromatography (TLC). The reaction mixture was then stirred further for 12 h and subsequently methanol was removed. The rest alkaline aqueous part containing sodium salt of amphiphiles was mixed with 30 mL of water followed by washing with diethyl ether (2 × 20 mL) to remove any unreacted ester. Then the pH of the aqueous layer was adjusted to 2 using 2N HCl and organic compound (amphiphile) was further extracted with ethyl acetate (3 × 20 mL). The extract was dried over anhydrous sodium sulphate, and evaporated by rotary evaporator and finally dried under vacuum to isolate the amphiphile. ¹H NMR spectroscopy, ESI mass spectroscopy are used to characterize the resultant amphiphiles, the details of which are mentioned below.

C₁₅H₃₁-Trp-OH: ¹HNMR (300MHZ, CDCl₃, TMS): δ = 8.21 (s, 1H, Trp ring -NH), 7.58-7.56 (d, 2H, J = 6, Trp ring H), 7.38-7.35 (d, 2H, J = 8.01, Trp ring H), 7.23-7.09 (m, 2H, Trp ring Hs), 7.03 (s, 1H, Trp ring H), 6.00-5.98 (d, 1H, J = 6, amide -NH), 4.94-4.92 (m, 1H, Trp C^aH), 3.41-3.30 (m, 2H, Trp C^B), 2.14-2.09 (t, 2H, J = 9, -CO-CH₂), 1.51 (br. 2H, -CH₂), 1.25 (br. 24H, -CH₂), 0.88-0.85 (t, 3H, J = 6, -CH₃). MS (35eV): m/z (%): 470 [M+Na⁺]

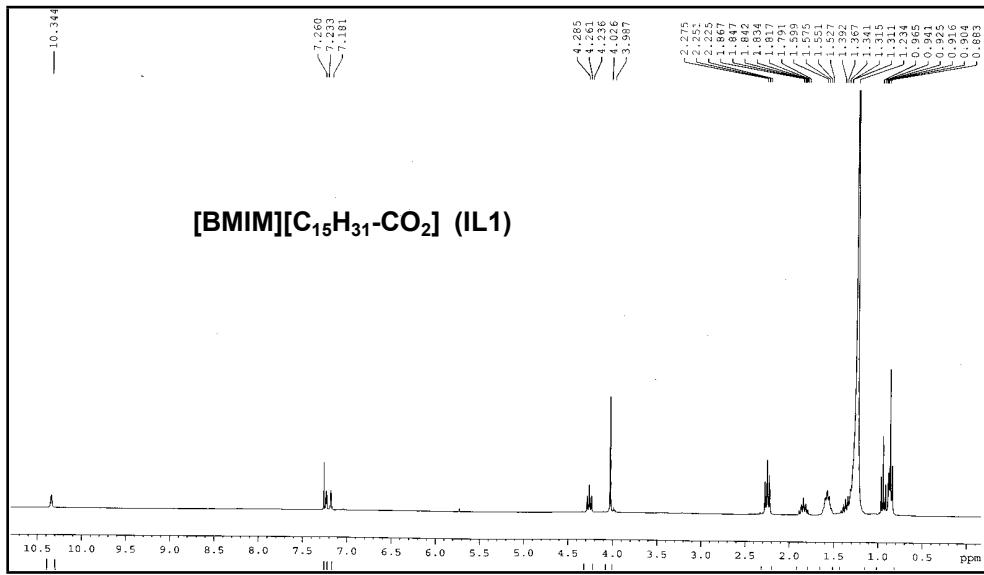
Synthesis of fatty acid-based 1-alkyl-3-methylimidazolium ionic liquids. Typically, as prepared aqueous solution of 1-alkyl-3-methylimidazolium hydroxide (5 mM) was added to the methanolic solution of different fatty acids and fatty acid conjugates (5 mM) and the reaction mixture was stirred magnetically for 12h at room temperature. The neutralization process was monitored via pH measurement. At pH~8, the resulting solution was evaporated to remove methanol under vacuum. Subsequently, the resultant organic compound was extracted to DCM and dried over Na_2SO_4 to remove water. The DCM solution was evaporated to collect the viscous ionic liquid, which was dried in vacuum at 60 °C. The purity of the compounds was verified using ^1H NMR and ^{13}C NMR spectroscopy and CHN elemental analysis.

[BMIM][C₁₅H₃₁-CO₂]: ^1H NMR (300 MHz, CDCl_3 , TMS): δ = 10.344 (s, imidazole ring C₂-H), 7.23-7.1 (s, imidazole ring C_{4,5}-H), 4.28–4.23 (t, J =7.2 Hz, -NCH₂), 4.02 (s, -NCH₃), 1.86–1.79 (m, cation-CH₂), 1.39–1.36 (m, anion-CH₂), 0.941 (t, J =7.2 Hz, -CH₃), 0.904 (t, J =6.3 Hz, anion -CH₃), 1.234 (m, 24H), 1.59-1.52 (m, anion β -CH₂), 2.51(t, anion α -CH₂) (spectra is shown in Figure 1; intensity ratio calculated of cation and anion 1:1.07); elemental analysis found (%) for $\text{C}_{24}\text{H}_{46}\text{N}_2\text{O}_2$ (395): C 73.16, H 11.61, N 7.27.

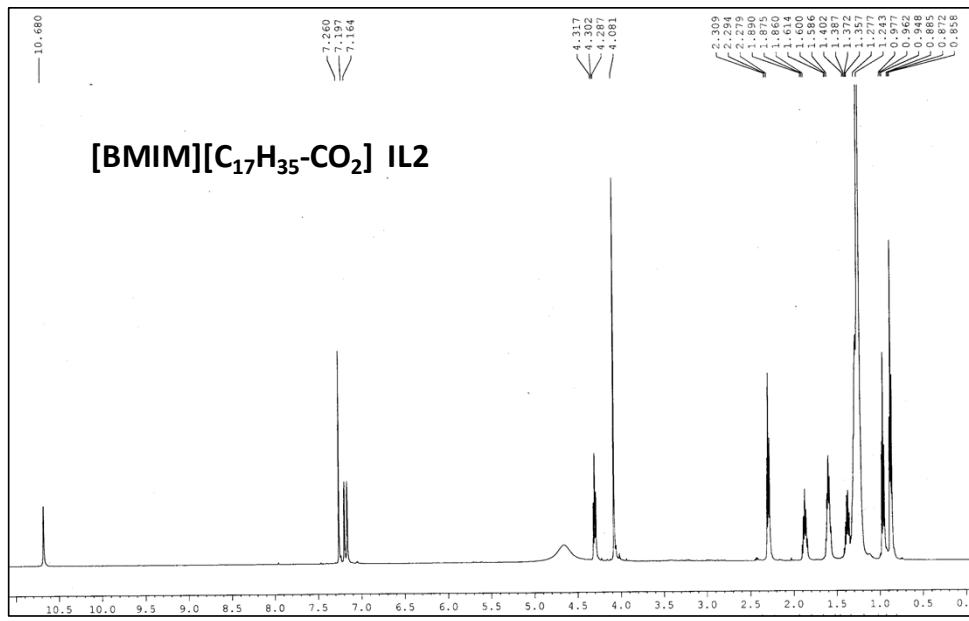
[BMIM][C₁₇H₃₅-CO₂]: ^1H NMR (500 MHz, CDCl_3 , TMS): δ = 10.68 (s, imidazole ring C₂-H), 7.19-7.16 (d, imidazole ring C_{4,5}-H), 4.31–4.28 (t, J =7.5 Hz, -NCH₂), 4.08 (s, -NCH₃), 1.875 (t, cation -CH₂), 1.40–1.35 (dd, anion-CH₂), 0.97–0.94 (t, J =7 Hz, -CH₃), 0.88-0.85 (t, J =6.5 Hz, anion -CH₃), 1.27-1.24 (m, 28H), 1.61-1.58 (m, β -CH₂), 2.30-2.27(m, α -CH₂) (spectra is shown in Figure 2; intensity ratio calculated cation:anion 1:1.1); elemental analysis found: (%) for $\text{C}_{26}\text{H}_{50}\text{N}_2\text{O}_2$ (422): C 73.71, H 11.84, N 6.54.

[BMIM][C₁₃H₂₇-CO₂]: ^1H NMR (500 MHz, CDCl_3 , TMS): δ = 10.445 (s, imidazole ring C₂-H), 7.2 (s, imidazole ring C_{4,5}-H), 4.296 (t, J =7 Hz, -NCH₂), 4.2 (s, -NCH₃), 1.88-1.85 (m, cation-CH₂), 1.41–1.33 (m, anion -C₁₃H₂), 0.97–0.94 (t, J =7 Hz, -CH₃), 0.88-0.85 (t, J =6.5 Hz, anion -CH₃), 1.27-1.24 (m, 20H), 1.60-1.56 (m, β -CH₂), 2.3-2.27(m, α -CH₂) (spectra is shown in Figure 3; intensity ratio of cation and anion calculated 1:1.1) elemental analysis found (%) for $\text{C}_{22}\text{H}_{42}\text{N}_2\text{O}_2$ (366): C 71.96, H 11.81, N 7.27

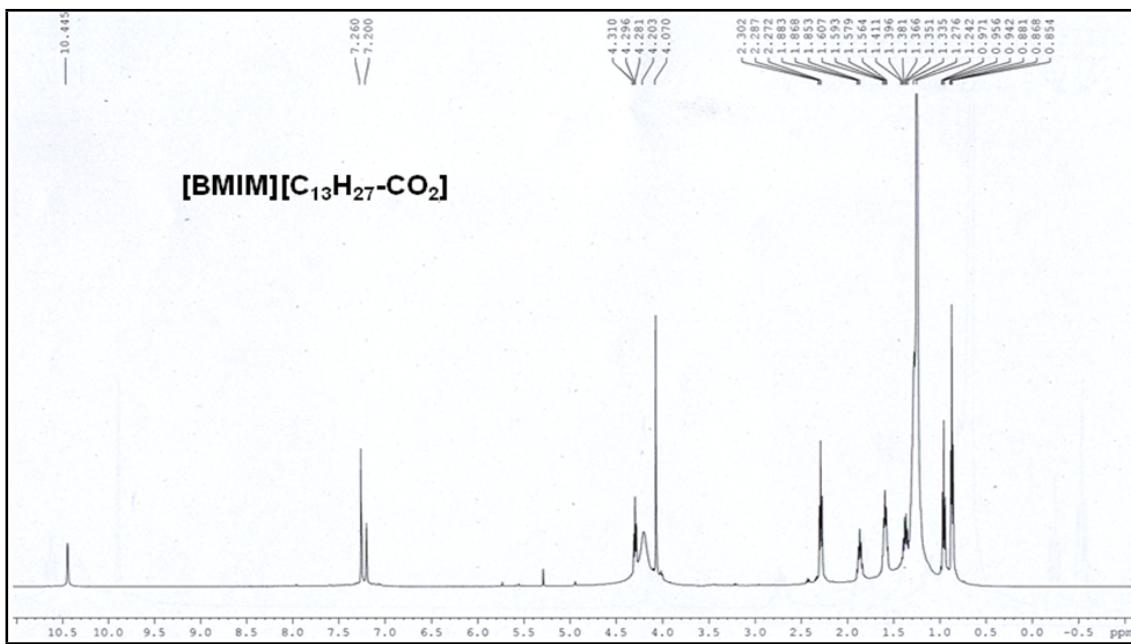
[DMIM][C₁₅H₃₁-CO₂]: ^1H NMR (500 MHz, CDCl_3 , TMS): δ = 10.213 (s, imidazole ring C₂-H), 7.19 (s, imidazole ring C_{4,5}-H), 4.29–4.26 (t, J =7 Hz, -NCH₂), 4.06 (s, -NCH₃), 1.883 (s, -

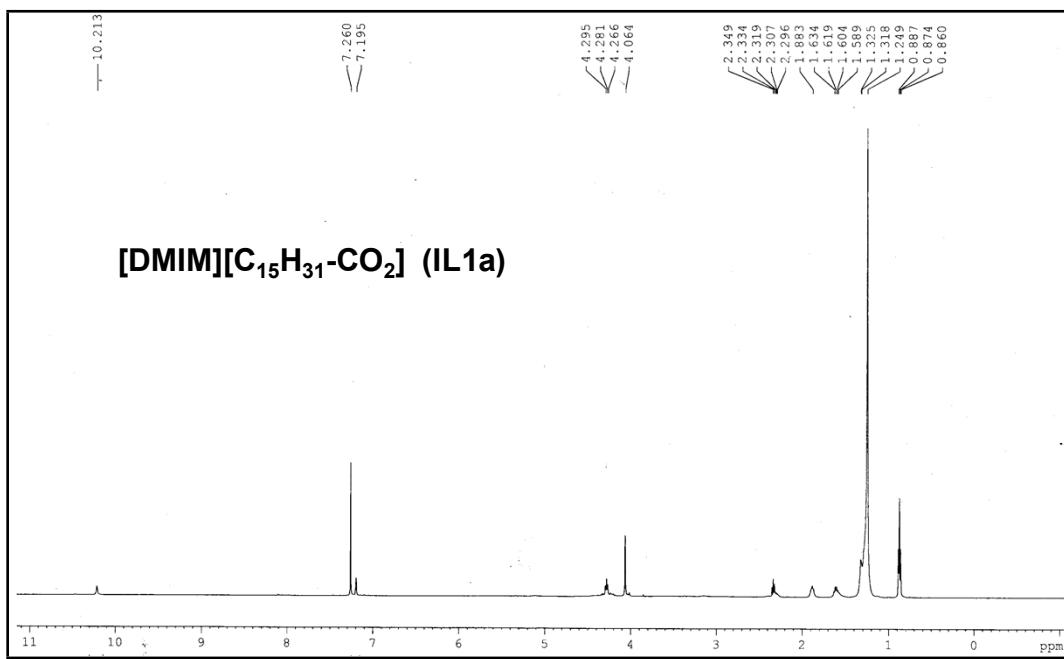

CH₂), 1.32–1.31 (m, -C₁₅H₂), 0.88–0.86 (t, , two -CH₃ of cation and anion), 1.249 (m, 24H), 1.63–1.58 (m, anion β -CH₂), 2.34–2.29 (m, anion α -CH₂) (spectra is shown in Figure 4; cation anion intensity ratio 1:1) elemental analysis calcd(%) for C₃₀H₅₈N₂O₂ (478): C 75.26, H 12.21, N 5.85; found: C 75.42, H 12.04, N 5.62

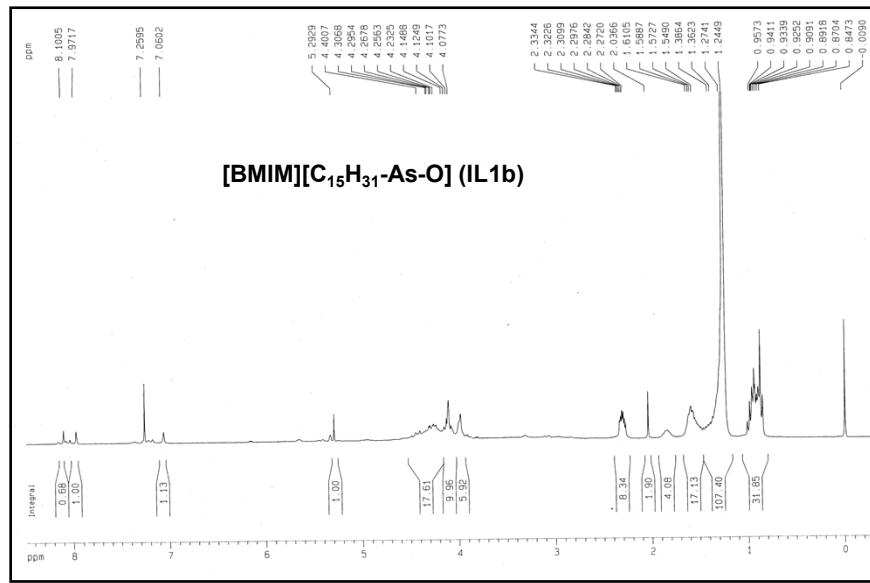
[BMIM][C₁₅H₃₁-As-O]: ¹HNMR (500 MHz, CDCl₃, TMS): δ = 7.06 (s, imidazole ring C_{4,5}-H), 8.10, 7.91 (s, O-H of anion), 4.3–4.1 (m, J=7.5 Hz, -NCH₂), 4.07 (s, -NCH₃), 1.88–1.85 (m, -CH₂), 1.38–1.36 (d, -C₁₅H₂), 0.98–0.94 (t, J=7.3 Hz, -CH₃), 0.89–0.845 (t, J=6.5 Hz, palmitate -CH₃), 1.27–1.24 (m, 24H), 1.61–1.54 (m, ester β -CH₂), 2.33–2.27 (m, ester α -CH₂), 5.29 (s, ring CH of ascorbate), 4.4 (s, *t*-CH of ascorbate), 4.3–4.2 (m, *s*-CH₂ of ascorbate) (spectra is shown in Figure 5; cation anion intensity ratio 1:1); elemental analysis found for C₃₀H₅₂N₂O₇ (552): C 65.34, H 9.33, N 5.16

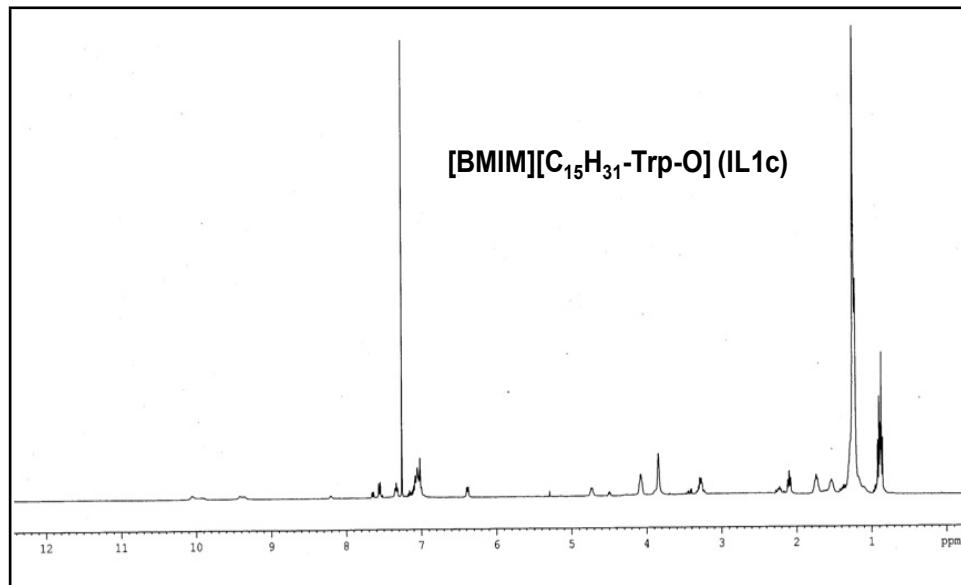

[BMIM][C₁₅H₃₁-Trp-O]: ¹HNMR (400 MHz, CDCl₃, TMS): δ = 10.1 (s, imidazole ring H), 7.35–7.31 (s, imidazole ring H), 4.49 (m, J=7.5 Hz, -NCH₂), 4.08 (s, -NCH₃), 0.97–0.93 (t, J=7.3 Hz, -CH₃), 8.21 (s, 1H, Trp ring -NH), 7.65–7.63 (d, 2H, J = 6, Trp ring H), 7.38–7.35 (d, 2H, J = 8.01, Trp ring H), 7.23–7.09 (m, 2H, Trp ring Hs), 7.03 (s, 1H, Trp ring H), 6.00–5.98 (d, 1H, J = 6, amide -NH), 4.74–4.72 (m, 1H, Trp C^aH), 3.45–3.40 (m, 2H, Trp C^b-H), 2.15 (t, 2H, J = 9 Hz, -CO-CH₂), 1.53 (s, 2H, -CH₂), 1.25–1.22 (s, 24H, -CH₂), 0.92–0.85 (t, 3H, J = 6, -CH₃) (spectra is shown in Figure 6; intensity ratio calculated of cation and anion 1:1.1) elemental analysis found (%) for C₃₅H₅₆N₄O₃ (580): C 72.2, H 9.63, N 9.32

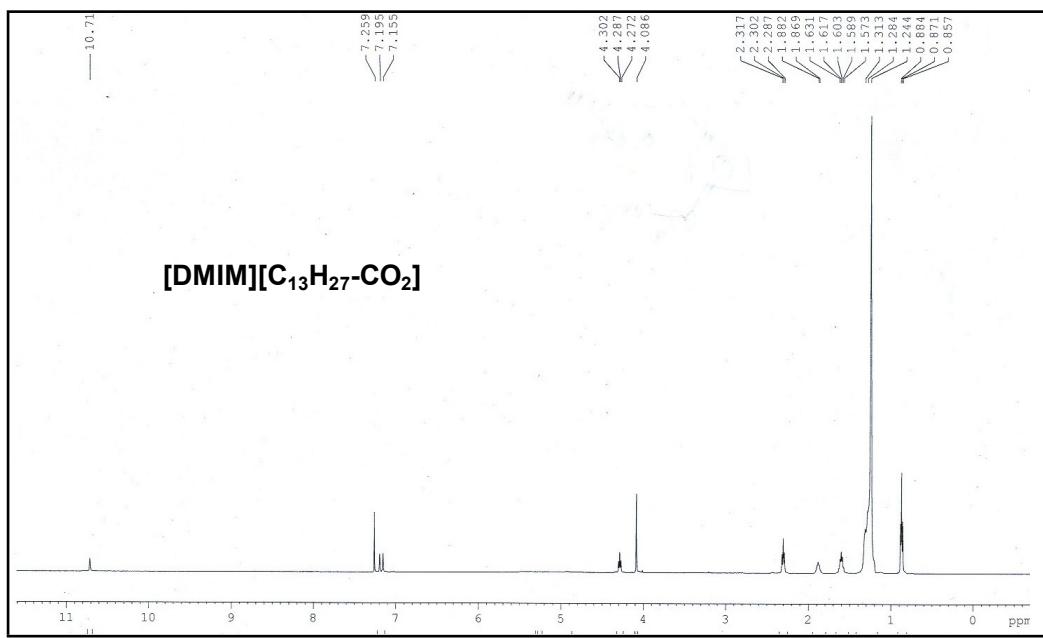
[DMIM][C₁₃H₂₇-CO₂]: ¹HNMR (500 MHz, CDCl₃, TMS): δ = 10.71 (s, imidazole ring C₂-H), 7.19–7.15 (s, imidazole ring C_{4,5}-H), 4.3–4.27 (m, J=7.5 Hz, -NCH₂), 4.08 (s, -NCH₃), 1.88–1.86 (d, cation -CH₂), 1.63–1.57 (m, anion b CH₂), 0.88–0.857 (t, -CH₃ of both anion and cation), 1.31–1.24 (m, 20H), 2.3–2.28 (m, anion α -CH₂) (spectra is shown in Figure 7; intensity ratio of cation and anion calculated 1:1) elemental analysis found (%) for C₂₈H₅₄N₂O₂ (451): C 74.76, H 12.15, N 6.17

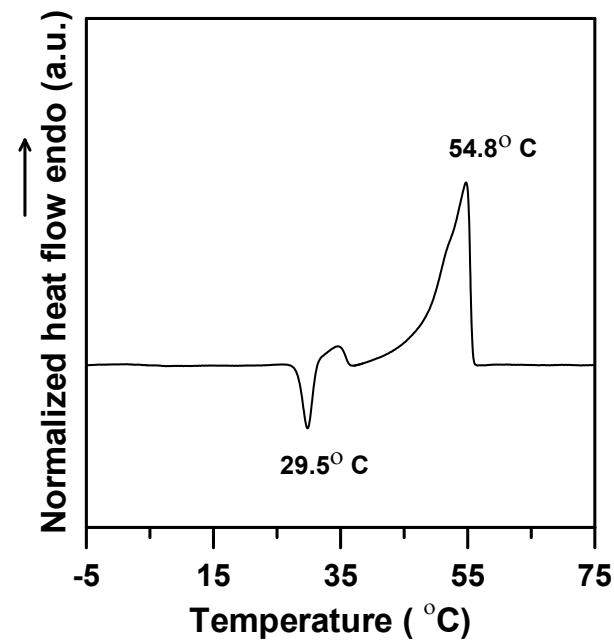

Preparation of C₁₅H₃₁-CO₂Na. Typically, 10 mg of C₁₅H₃₁-CO₂H was first dissolved in 3 mL of methanol in a small beaker; subsequently water (5 mL) was added with swirling. 0.025 N NaOH was then added to it dropwise with subsequent pH measurement. At certain point, pH abruptly increases to 8.3. The salt is collected after solvent removal under vacuum.

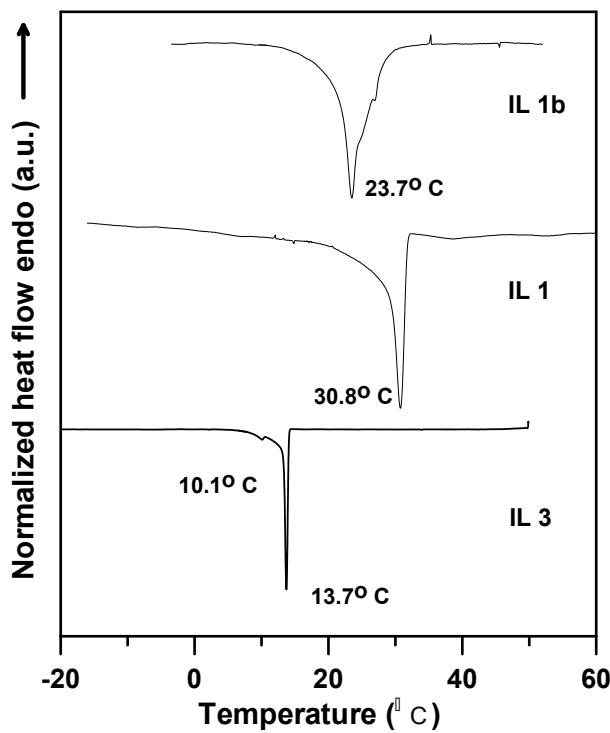

Figure S1: NMR spectrum of [BMIM][C₁₅H₃₁-CO₂].

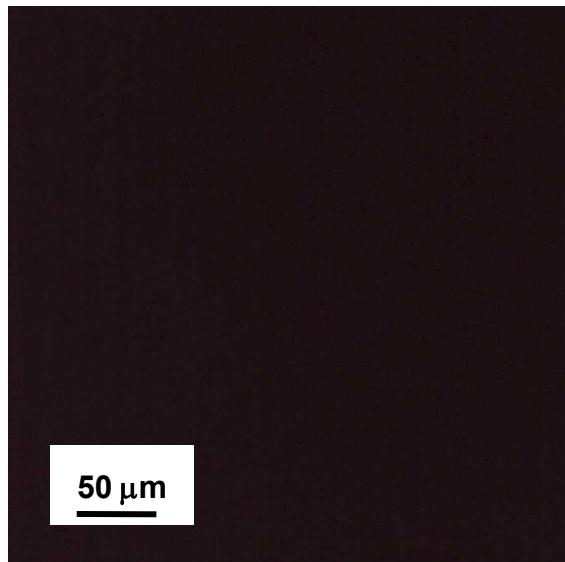

Figure S2: NMR spectrum of [BMIM][C₁₇H₃₅-CO₂].

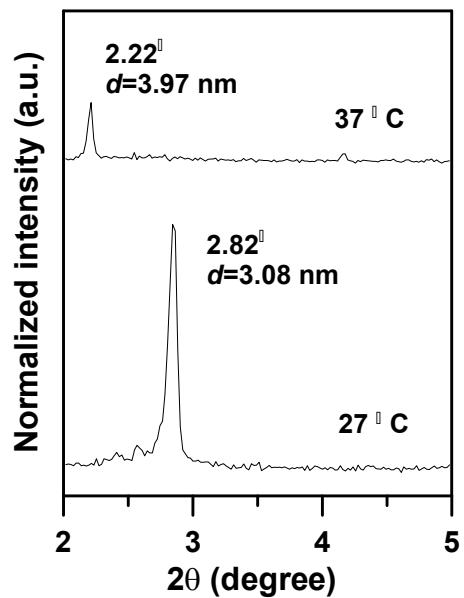

Figure S3: NMR spectrum of [BMIM][C₁₃H₂₇-CO₂].

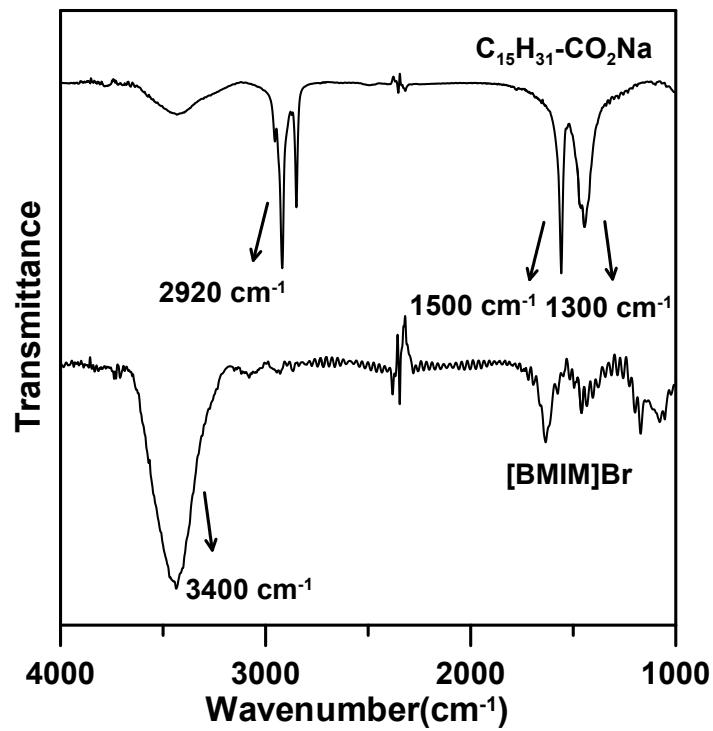

Figure S4: NMR spectrum of [DMIM][C₁₅H₃₁-CO₂].


Figure S5: NMR spectrum of [BMIM][C₁₅H₃₁-As-O].


Figure S6: NMR spectrum of [BMIM][C₁₅H₃₁-Trp-O].


Figure S7: NMR spectrum of $[\text{DMIM}][\text{C}_{13}\text{H}_{27}\text{-CO}_2]$.


Figure S8. DSC thermogram of $[\text{DMIM}][\text{C}_{13}\text{H}_{27}\text{-CO}_2]$ on heating at 2° C/ min.


FigureS9. DSC thermograms during cooling ($2^{\circ}\text{ C}/\text{min}$) of different ILs.

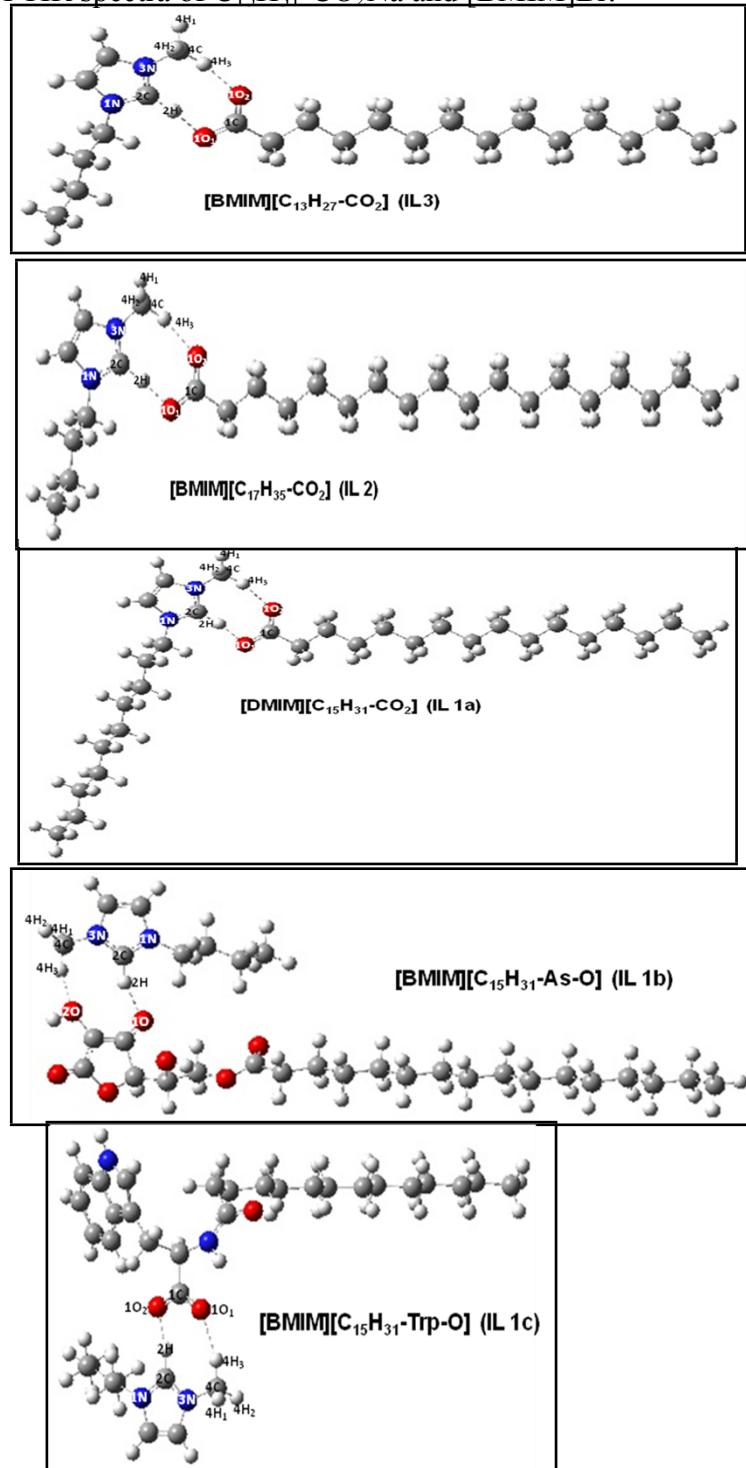

Figure S10: POM images of **IL1** at 70° C.

Figure S11. The low angle XRD pattern of **IL1** at 27 °C and at 37 °C.

Figure S12: FTIR spectra of $C_{15}H_{31}-CO_2Na$ and $[BMIM]Br$.

Figure S13. Optimized geometry of ionic liquids (**IL2**, **IL3**, **IL1a**, **IL1b** and **IL1c**) at the B3LYP/6-31G(d) level of theory. The red, blue, grey and white color signifies oxygen, nitrogen, carbon and hydrogen atom respectively.

Table S1. Bragg reflections data collected from the X-ray diffractograms of different ionic liquids

Ionic liquids	Angle of diffraction (2θ)	Layer-spacing value (nm)
IL1	2.85, 5.72, 21.4	3.08
IL2	2.72, 5.45, 8.16, 10.9	3.24
IL3	5.69	3.27
IL1a	5.83, 6.97, 10.1, 10.5	-
IL1b	2.82, 5.64, 21.4	3.13

Table S2.
fully extended
molecules

Ionic liquids	Estimated molecular length(nm)
IL1	2.67
IL2	3.10
IL3	2.20
IL1a	2.45
IL1b	2.72
IL1c	2.61

Estimated
length of the IL

Table S3.

Isolated ions	Calculated(cm ⁻¹)	Experimental(cm ⁻¹)
[BMIM] ⁺	3312(C-H str)	3400
	2978 (CH ₂ sym st)	2920
[C ₁₅ H ₃₅ -CO ₂] ⁻	1546(CH ₂ bend)	1500
	1366(CO ₂ sym str)	1400

Comparison between calculated and experimental IR stretching frequencies of isolated [BMIM]⁺ cation and [C₁₅H₃₅-CO₂]⁻ anion.

Ionic liquid	ΔE (kJmol ⁻¹)		ΔH (kJmol ⁻¹)		ΔG (kJmol ⁻¹)	
	6-31G(d)	6-311++G(d,p)	6-31G(d)	6-311++G(d,p)	6-31G(d)	6-311++G(d,p)
IL1	-441.32	-401.53	-440.02	-401.28	-392.41	-344.29
IL2	-441.57	-401.49	-442.95	-400.02	-383.13	-351.62
IL3	-441.70	-401.60	-440.44	-400.94	-392.50	-347.05
IL1a	-439.35		-440.27		-383.51	
IL1b	-377.45		-375.82		-329.30	

Table S4. Computed interaction energies (ΔE), enthalpy change (ΔH) and Gibbs free energy change (ΔG) for single ion-pair formation in ionic liquids.

IL1c	-382.01		-382.38		-332.85	
-------------	----------------	--	----------------	--	----------------	--

Table S5. Computed bond lengths and Mulliken Charge distributions on atoms of optimized geometries of **IL1** at the B3LYP/6-31G(d) level of theory.

Atom No.	Mulliken Charge	Bond No.	Bond distance
1N	-0.409	2C-2H	1.141
2C	0.261	2H-1O ₁	1.614
3N	-0.410	4H ₃ -1O ₂	2.025
2H	0.346	4C-4H ₃	1.099
4C	-0.378	-	-
4H₁ and 4H₂	0.173	-	-
4H₃	0.285	-	-
1O₁	-0.652	-	-
1O₂	-0.594	-	-
1C	0.607	-	-

Table S6. Computed bond lengths and Mulliken Charge distributions on atoms of optimized geometries of **IL2** at the B3LYP/6-31G(d) level of theory.

Atom No.	Mülliken Charge	Bond No.	Bond distance(Å)
1N	-0.409	2C-2H	1.143
2C	0.261	2H-1O ₁	1.602
3N	-0.41	4H ₃ -1O ₂	2.024
2H	0.345	4C-4H ₃	1.099
4C	-0.378	-	-
4H₁ and 4H₂	0.173	-	-
4H₃	0.285	-	-
1O₁	-0.651	-	-
1O₂	-0.593	-	-
1C	0.605	-	-

Table S7. Computed bond lengths and Mulliken Charge distributions on atoms of optimized geometries of **IL3** at the B3LYP/6-31G(d) level of theory.

Atom No.	Mülliken Charge	Bond No.	Bond distance(Å)
1N	-0.409	2C-2H	1.14
2C	0.262	2H-1O ₁	1.626
3N	-0.410	4H ₃ -1O ₂	2.034
2H	0.343	4C-4H ₃	1.099
4C	-0.377	-	-
4H₁ and 4H₂	0.173	-	-
4H₃	0.285	-	-
1O₁	-0.649	-	-
1O₂	-0.596	-	-
1C	0.603	-	-

Table S8. Computed bond lengths and Mulliken Charge distributions on atoms of optimized geometries of **IL1a** at the B3LYP/6-31G(d) level of theory.

Atom No.	Mülliken Charge	Bond No.	Bond distance(Å)

1N	-0.409	2C-2H	1.139
2C	0.264	2H-1O ₁	1.622
3N	-0.409	4H ₃ -1O ₂	2.028
2H	0.340	4C-4H ₃	1.099
4C	-0.376	-	-
4H₁ and 4H₂	0.172	-	-
4H₃	0.284	-	-
1O₁	-0.647	-	-
1O₂	-0.595	-	-
1C	0.602	-	-

Table S9. Computed bond lengths and Mulliken Charge distributions on atoms of optimized geometries of **IL1b** at the B3LYP/6-31G(d) level of theory.

Atom No.	Mulliken Charge	Bond No.	Bond distance(Å)
1N	-0.409	2C-2H	1.114
2C	0.288	2H-1O	1.727
3N	-0.410	4H ₃ -2O	2.203
2H	0.318	4C-4H ₃	1.092
4C	-0.352	-	-
4H₁	0.180	-	-
4H₂	0.188	-	-
4H₃	0.255	-	-
1O	-0.683	-	-
2O	-0.713	-	-

Table S10. Computed bond lengths and Mulliken Charge distributions on atoms of optimized geometries of **IL1c** at the B3LYP/6-31G(d) level of theory.

Atom No.	Mülliken Charge	Bond No.	Bond distance(Å)
1N	-0.408	2C-2H	1.118
2C	0.267	2H-1O ₁	1.700
3N	-0.409	4H ₃ -1O ₂	2.064
2H	0.338	4C-4H ₃	1.097
4C	-0.376	-	-
4H₁	0.180	-	-
4H₂	0.181	-	-
4H₃	0.283	-	-
1O₁	-0.626	-	-
1O₂	-0.593	-	-
1C	0.595	-	-