Bond lengths of pure and Mo-doped $mBiVO_4$ (010) surfaces.

Geometric structures of adsorptive surfaces.

Supporting information to accompany

"Why the photocatalytic activity of Mo-doped BiVO₄ is enhanced: a

comprehensive density functional study"

by

Kaining Ding, Bin Chen, and Yongfan Zhang

May 6, 2014

CONTENTS

Table S1. The bond lengths of the outmost layer of (010) surface. Table S2. The bond lengths of Mo-O bonds in Mo-doped (010) surfaces. Fig. S3. The spin electron density of $Bi_{1-x}Mo_xVO_4$ predicted by the GGA level. Fig. S4. The geometric structure of H₂O adsorbed on Mo@V_top surface. Fig. S5. The geometric structure of H₂O adsorbed on Mo@V_in surface. Fig. S6. The geometric structure of H₂O adsorbed on Mo@Bi in surface.

Bond	(010) surface
Bi-O/ Å	2.530 ×2
	2.341 ×2
	2.355 ×2
V-O/ Å	1.683 ×2
	1.813 ×2

Table S1. The bond lengths of the outmost layer of (010) surface.

The models	of Mo-doped surfaces	The bond lengths of Mo-O bond /Å $% \mathcal{A}$
	Mo@V_top	1.774 ×2, 1.855 ×2
(010)	Mo@V_in	1.861 ×2, 1.820 ×2
	Mo@Bi_top	1.906 ×2, 2.056 ×2, 2.129 ×2
	Mo@Bi_in	2.157 ×2, 2.136 ×2, 2.156 ×2, 2.476 ×2

Table S2. The bond lengths of Mo-O bonds in Mo-doped (010) surfaces.

Fig. S3. The spin electron denstiy of $Bi_{1-x}Mo_xVO_4$ predicted by the GGA level. (The issurface is at 0.03 *e*/Å³)

Fig. S4. The geometric structure of H_2O adsorbed on Mo@V_top surface.

Fig. S5. The geometric structure of H_2O adsorbed on Mo@V_in surface.

