Table 1SI: Main H-bonding interactions and their average distances (and standard deviation measured in Å)	in each protein – ligand complex
along 10 ns molecular dynamics trajectories.	

Systems	CDK2/ligand					p38/ligand				AuroraA/ligand				
Compound ^a	Glu81=O	Leu83-N	Leu83=O	Lys33-NH ₃	Asp86=OD*	Asp86-N	Gln131=O	Glu71=OE*	Thr106-OH	Asp168-N	Met109-N	Ala212-N	Lys161-NH ₃	Pro213
1 (1aq1+)	2.86±0.13	2.80±0.11	-	-	3.36±0.84	-	2.91±0.40	3.24±0.70	-	3.12±0.23	3.14±0.17	3.30±0.20	-	-
2 (1e1x)	2.89±0.16	3.45±0.24	2.87±0.15	-	-	-	-	-	-	2.98±0.17	3.07±0.15	3.38±0.21	2.82±0.29	-
3 (1h1s)	2.79±0.13	3.60±0.21	2.96±0.17	-	-	3.58±0.76	-	3.04±0.25	-	-	3.18±0.17	3.32±0.20	-	-
4 (1h1p)	2.79±0.13	3.29±0.28	3.06±0.35	-	-	-	-	-	3.07±0.19	2.95±0.20	3.21±0.22	3.32±0.20	4.08±0.82	-
5 (1ogu)	2.8±0.11	3.44±0.27	2.87±0.15	-	3.04±0.79	-	-	-	-	3.02±0.22	3.10±0.17	3.38±0.20	3.22±0.57	-
6 (1pkd+)	2.89±0.13	3.03±0.18	-	-	-	-	2.84±0.19	-	3.21±0.24	3.21±0.26	3.04±0.14	3.23±0.18	-	-
7 (1pxj)	3.40±0.31	-	-	2.98±0.17	-	-	-	-	-	-	3.07±0.16	3.32±0.20	-	-
8 (1pxl)	-	2.95±0.13	2.96±0.17	2.99±0.18	-	-	-	-	3.30±0.31	3.20±0.28	3.06±0.15	3.39±0.22	3.11±0.27	-
9 (1pxm)	-	3.48±0.46	2.82±0.12	-	2.63±0.14	-	-	3.08±0.24	3.00±0.17	2.96±0.17	3.17±0.16	3.35±0.21	-	-
10 (1pxn)	-	3.03±0.14	2.94±0.16	3.03±0.2	3.4±0.98	-	-	3.94±1.00	-	2.95±0.15	3.14±0.16	3.24±0.20	4.20±1.14	-
11 (1pxp)	-	2.92±0.11	2.94±0.16	2.97±0.16	-	-	-	3.19±0.32	-	2.93±0.16	3.21±0.18	3.36±0.23	3.53±0.63	-
12 (2a4l)	-	3.61±0.21	2.84±0.13	-	-	-	-	-	3.24±0.26	3.02±0.17	3.01±0.13	-	-	3.29±0.50
13 (2exm)	2.80±0.12	3.43±0.22	-	3.09±0.21	-	-	-	-	3.00±0.16	2.99±0.18	3.22±0.21			
14 (2fvd)	2.89±0.14	3.89±0.22	2.84±0.13	-	-	3.58±0.65	-							
15 (2x1n)	-	3.16±0.18	2.83±0.12	-	-	-	-							

a p38 and Aurora A ligands were numbered in the same order as they appeared in the reference article, except that we use numbers instead of letters. The codes in parenthesis correspond to the ligands interacting with CDK2 and the numbering of compounds was also conserved.

Systems	CDK2/ligand						p38/li	gand	AuroraA/ligand					
Compound ^a	Glu81=O	Leu83-N	Leu83=O	Lys33-NH ₃	Asp86=OD	Asp86-N	Gln131=O	Glu71=OE*	Thr106-OH	Asp168-N	Met109-N	Ala212-N	Lys161-NH ₃	Pro213
1 (1aq1+)	100%	98%	-	-	57%	-	96%	63%	-	74%	79%	98%	-	-
2 (1e1x)	91%	96%	87%	-	-	-	-	-	-	80%	81%	64%	80%	-
3 (1h1s)	100%	81%	99%	-	-	65%	-	75%	-	-	77%	70%	-	-
4 (1h1p)	100%	98%	86%	-	-	-	-	-	52%	80%	71%	73%	46%	-
5 (1ogu)	65%	88%	100%	-	88%	-	-	-	-	80%	79%	64%	72%	-
6 (1pkd+)	100%	89%	-	-	-	-	87%	-	39%	69%	82%	86%	-	-
7 (1pxj)	95%	-	-	99%	-	-	-	-	-	-	80%	70%	-	-
8 (1pxl)	-	99%	100%	94%	-	-	-	-	35%	69%	82%	62%	78%	-
9 (1pxm)	-	80%	99%	-	98%	-	-	66%	66%	82%	78%	69%	-	-
10 (1pxn)	-	99%	97%	58%	61%	-	-	57%	-	83%	74%	84%	47%	-
11 (1pxp)	-	99%	100%	96%	-	-	-	38%	-	81%	80%	69%	78%	-
12 (2a4l)	-	92%	100%	-	-	-	-	-	35%	77%	83%	-	-	56%
13 (2exm)	100%	97%	-	77%	-	-	-	-	61%	81%	70%			
14 (2fvd)	82%	58%	100%	-	-	55%	-							
15 (2x1n)	-	98%	100%	-	-	-	-							

	1 0/	· · · · · · · · · · · · · · · · · · ·	1.	1	1 1	^ 1 1	1 .	• , •
Iable /NI: Specific interactions and their occurrence	lernressed as %) in each	nratein — lic	rand com	nler alone	ה /חק מה/פרעות	r dynamics fra	$11\rho c for 1\rho s$
1 able 251. Specific interactions and their becarrence	(chpressed us / 0	y in cach j	or or contraction of contraction of the contracti			2ns morecura	i aynanics ira	

a p38 and Aurora A ligands were numbered in the same order as they appeared in the reference article, except that we use numbers instead of letters. The codes in parenthesis correspond to the ligands interacting with CDK2 and the numbering of compounds was also conserved.

Figure 1SI. Plots of RMSD (Angstroms) values against simulation time (picoseconds). Data correspond to equilibration molecular dynamics of compounds on the series studied. CDK2 is shown at top, Aurora A at middle and p38 kinase at bottom.

Code 1SI. Example of an ISF (Interaction Specification Format) file used for the analysis of all compounds bound to CDK2. Atom numbering corresponds to crystal PDB ID 1H1S.

alias atom1 A:1298:N3 alias atom2 A:1298:N9 alias atom3 A:1298:N2 #hbond distance: @0.5 4864 #H:N9 A:81:O distance: @0.5 atom1 A:83:H