Supporting Information

Study on Hydrogen Activation Properties of Ni-Based Intermetallics:

Relationship between Reactivity and Electronic State

Shinya Furukawa,^{*,†} Kengo Ehara,[‡] Kenichi Ozawa,[‡] and Takayuki Komatsu^{*,‡}

[†]Department of Chemistry, [‡]Department of Chemistry and Materials Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-E1-10, Ookayama, Meguro-ku, Tokyo 152-8551, Japan

> E-mail: furukawa.s.af@m.titech.ac.jp, Tel: +81-3-5734-2602, Fax: +81-3-5734-2758 E-mail: komatsu.t.ad@m.titech.ac.jp, Tel: +81-3-5734-3532, Fax: +81-3-5734-2758

Experimental details

Catalyst preparation

Ni based intermetallic compounds (Ni₃M, M = Ge, Nb, Sn, Ta, and Ti) were prepared by arc melting of a mixture of Ni (Soekawa Chemical, 99.9%) and the second metal (Soekawa Chemical, 99.9%) under an argon atmosphere. The resultant ingots were crushed in air and filtered into particles with diameters below 25 μ m. Powders of pure Ni were also filtered into particles with similar diameters.

Characterization

The crystal structure of the prepared intermetallics was examined by powder X-ray diffraction (XRD) with a Rigaku RINT2400 using an X-ray source of Cu K α . X-ray photoelectron spectra (XPS) of the intermetallics were recorded with an ULVAC PHI 5000 VersaProbe spectrometer. The catalyst was pressed into a pellet and placed into a quartz reactor, where it was reduced under flowing hydrogen (50 mlmin⁻¹) at 873 K for 1 h. The reduced catalyst was transferred to the spectrometer without being exposed to air. Spectra were obtained with an AlK α X-ray source using C 1s as a reference for binding energy. d band center (C_d) was defined as the position of the vertical line bisecting the area of d band. The number of exposed Ni was estimated by CO pulse adsorption. Prior to the measurement, the catalyst was reduced under flowing H₂ (60 mlmin⁻¹) at 1073 K for 0.5 h, followed by He (60 mlmin⁻¹) at 1073 K for 1 h to remove adsorbed hydrogen. After cooling to room temperature, a specific amount CO(5%)/He pulse was introduced to the catalyst bed and passed (unadsorbed) CO was measured by a TCD detector.

H₂-D₂ equilibration

H₂–D₂ equilibration was carried out with a glass flow and circulation system connected with a quadrupole mass spectrometer (Spectra International, MICROVISION). Prior to each reaction, the catalyst was pretreated under 15 kPa of hydrogen at 873 K for 1 h and evacuated at 298 K for 10 min. A mixture of H₂ (2.5 kPa) and D₂ (2.5 kPa) was then circulated through the catalyst at a certain reaction temperature and the formation of HD was monitored by mass spectrometry. The fraction of HD (f_{HD}) was calculated by the following equation: $f_{HD} = P_{HD} / (P_{H2} + P_{D2} + P_{HD})$. To eliminate the contribution of HD initially contained as an impurity of D₂, f_{HD} was calibrated into Δf_{HD} as follows: $\Delta f_{HD} = f_{HD} - f_{HD}^0 = P_{HD} / (P_{H2} + P_{D2} + P_{HD}) - P_{HD}^0 / (P_{H2}^0 + P_{D2}^0 + P_{HD}^0)$, where superscript zero indicates each value at 0 min. The reaction rate (r / \min^{-1}) was estimated by the slope of Δf_{HD} (identical to that of f_{HD}) within a linear region. After 10 min of the reaction, the catalyst was evacuated and the temperature was changed, followed by introduction of a mixture of H₂ (2.5 kPa) and D₂ (2.5 kPa) for the next reaction. This procedure was repeated to obtain the Arrhenius plot. Catalyst amount was controlled so that Δf_{HD} reached 0.1~0.4 at 10 min: Ni (10 mg), Ni₃Ge (50 mg), Ni₃Nb (100 mg), Ni₃Ta (200 mg), and Ni₃Ti (100 mg).

					r · · · · · · ·	-r		
compound	system	space group	а	b	С	α	β	γ
Ni	cubic	Fm-3m	3.5262	3.5262	3.5262	90	90	90
(ref: PDF#00-0	004-0850)		3.5238	3.5238	3.5238	90	90	90
Ni ₃ Ge	cubic	Pm-3m	3.5834	3.5834	3.5834	90	90	90
(ref: PDF#00-035-1359)			3.5720	3.5720	3.5720	90	90	90
Ni ₃ Sn	hexagonal	P6 ₃ /mmc	5.2983	5.2983	4.2517	90	90	120
(ref: PDF#00-0	004-0850)	-	5.2961	5.2961	4.2481	90	90	120
Ni ₃ Ti	hexagonal	P6 ₃ /mmc	5.1152	5.1152	8.3268	90	90	120
(ref: PDF#03-0	065-2038)	5	5.1010	5.1010	8.3067	90	90	120
Ni ₃ Ta	tetragonal	I4/mmm	3.6341	3.6341	7.4555	90	90	90
(ref: PDF#01-072-2595)		3.6270	3.6270	7.4550	90	90	90	
Ni ₃ Nb	orthorhombic	Pmmn	5.1228	4.2547	4.5439	90	90	90
(ref: PDF#00-015-0101)		5.1060	4.2510	4.5560	90	90	90	

Table S1. Crystal structure parameters of Ni and Ni₃M intermetallic compounds prepared in this study. ^a

^{*a*} Calculated based on their XRD patterns. The reported values are also listed in the lower rows.

Table 52. The number of exposed $M(N_{Ni}^{**})^*$ and specific surface area of M and $M_{3}M$.								
catalyst	$N_{\rm Ni}{}^{ex}$ / $\mu { m mol} \cdot { m g}^{-1}$	relative amount	$S_{ m BET}$ / m ² ·g ⁻¹	relative amount				
Ni	0.21	1.00	0.92	1.00				
Ni ₃ Ge	0.10	0.48	1.44	1.57				
Ni ₃ Nb	0.054	0.26	0.90	0.98				
Ni ₃ Sn	0.11	0.52	0.86	0.94				
Ni ₃ Ta	0.059	0.28	1.37	1.49				
Ni ₃ Ti	0.10	0.47	0.37	0.41				

Table S2. The number of exposed Ni $(N_{Ni}^{ex})^a$ and specific surface area of Ni and Ni₃M.

^{*a*} Measured by CO adsorption.

Figures

Figure S1. Crystal structure of Ni₃Ge (ICSD: #53745) with (a) a single unit cell and (b) its truncated cube model exposing {100} and {111} planes.

Figure S2. Correlation between E_a and d band width of Ni and Ni₃M intermetallics.

Figure S3. Correlation between E_a and the nearest Ni–Ni distance of Ni and Ni₃M intermetallics.