Electronic Supplementary Information

Thermotropic cubic and tetragonal phases made of rod-like molecules

M. Vogrin, N. Vaupotič, M. Wojcik, J. Mieczkowski, K. Madrak, D. Pociecha ${ }^{*}$, E. Gorecka
*Correspondence to: pociu@chem.uw.edu.pl

Synthesis and spectral characterization of studied compounds

Scheme S1. Synthesis scheme of rod-like mesogenic dimers. Reaction conditions: i) Br_{2}, hv; ii) $\mathrm{SOCl}_{2}, \mathrm{CHCl}_{3}$, reflux; iii) $\mathrm{R}^{1} \mathrm{OH}$, pyridine, toluene; iv) KI , $\mathrm{K}_{2} \mathrm{CO}_{3}, 4,-4^{\prime}$ - dihydroxybiphenol ($0,5 \mathrm{eq}$), DMF; v) $\mathrm{KI}, \mathrm{K}_{2} \mathrm{CO}_{3}, 4,-4^{\prime}$ - dihydroxybiphenol ($2,5 \mathrm{eq}$), DMF; vi) $\mathrm{KI}^{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, excess of alkyl $4-$ (bromomethyl)benzoate, DMF.

Preparation of 4-Bromomethyl-benzoyl chloride $\underline{2}$

To a dried 1000 mL two-neck round-bottom flask equipped with a stir bar and reflux condenser p-toluic acid $\underline{\mathbf{1}}$ (34.04 g , $0.25 \mathrm{~mol})$ and $\mathrm{CCl}_{4}(400 \mathrm{~mL})$ was added. Solution was heated to reflux and then bromine solution ($12.9 \mathrm{~mL}, 0.25$ $\mathrm{mol})$ in $\mathrm{CCl}_{4}(20 \mathrm{~mL})$ was added dropwise within 1.5 h in the presence of visible light from 500W lamp. Slightly orange solution was cooled down and thionyl chloride ($54.41 \mathrm{~mL}, 0.75 \mathrm{~mol}$) was added afterwards stirred at reflux
for 2 h and then cooled. After the solvents were evaporated, the crude material was purified by distillation under lowered pressure yielding the pure product $\underline{\mathbf{2}}$ as white crystals (68% yield). m.p: 33-34.

Analytical data for compound 2:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}): 8.12-8.11(\mathrm{~d}, 2 \mathrm{H}), 8.09-8.06(\mathrm{~d}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H})$.

Preparation of (R/S)-1-methylheptyl-4-(bromomethyl)-benzoate $\underline{\mathbf{3}}$

To the acid chloride $\underline{\mathbf{2}}(10.0 \mathrm{~g}, 42.8 \mathrm{mmol})$ was dissolved in a dried toluene (130 mL) and pyridine ($3.78 \mathrm{~mL}, 47.1$ mmol) was added. The resulting solution was gently stirred at lowered temperature ($3-5^{\circ} \mathrm{C}$) and the racemic 2 -octanol $(9.11 \mathrm{~g}, 70.0 \mathrm{mmol}$) was slowly added. The resulting suspension was further stirred gently at room temperature for 3 h . The white precipitate was filtrated and residue solution was evaporated; the crude material was purified by column chromatography (hexane/toluene $=2 / 8$ as eluent) to give relevant ester $\underline{\mathbf{3}}\left[\mathrm{R}=\left[-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{13}\right]\right.$ in 78% yield as a white solid.
The same procedure was applied to obtain compounds having other terminal chains. The following alcohols have been subjected to the esterification reaction with 4-Bromomethyl-benzoyl chloride to obtain proper benzyl bromide esters: (R)-2-octanol [substrate for final molecule $6 / 1(R / R S)$ and $6 / 1(R / R)$], racemic 2-octanol [substrate for final molecule $6 / 1$ (R/RS) and 6/1 (RS/RS)], racemic 2-undecanol [substrate for final molecule 9/1 (RS/RS)], racemic 2dodecanol [substrate for final molecule 10/1 (RS/RS)], 5-nananol [substrate for final molecule 4/4], racemic 3dodecanol 9/2 (RS/RS)].
Optically pure substrate: (R)-(-)-2-Octanol, 99\% ([$\alpha] 17 / \mathrm{D}-9.5^{\circ}$, neat) from Sigma-Aldrich has been used for synthesis of precursor of final compound $\mathbf{6} / \mathbf{1}(\mathbf{R} / \mathbf{R})$. The esterification reaction proceeds according to the SN2 mechanism, but not on the chiral carbon of (R)-2-octanol, thus neither racemization nor chirality inversion takes place and chirality of the substrate is completely preserved in the final product.

Analytical data for compound $\underline{\mathbf{3}}$ ((R/S)-1-methylheptyl-4-(bromomethyl)-benzoate)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) ; 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) ; 5.15(1 \mathrm{H}, \mathrm{m}) ; 4.31(2 \mathrm{H}, \mathrm{s}) ; 1.81-1.70(2 \mathrm{H}$, $\mathrm{m}) ; 1.68-1.56(3 \mathrm{H}, \mathrm{m}) ; 1.47-1.23(8 \mathrm{H}, \mathrm{m}) ; 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz})$;

di-[(R/S)-1-methylheptyl]-4,4`-(4,4`-biphenyloxy)dibenzoate 4 (6/1(RS/RS))

To a gently heated solution $-\left(45-50^{\circ} \mathrm{C}\right)$, of $4,4^{\prime}$-dihydroxybiphenyl $(11.14 \mathrm{~g}, 59.8 \mathrm{mmol})$, potassium iodide (14.61 g , 88.0 mmol) and potassium carbonate ($14.59 \mathrm{~g} ; 105.6 \mathrm{mmol}$) in 340 mL of 1-methyl-2-pyrrolidinone a (R/S)-1-methylheptyl-4-(bromomethyl)-benzoate $\underline{\mathbf{3}}(39,1 \mathrm{~g}, 119.6 \mathrm{mmol})$ was slowly added. The reaction mixture was further stirred for 24 h at $120^{\circ} \mathrm{C}$. After that, the mixture was cooled down to a room temperature and poured into water with ice. Cream precipitate was dried and the crude product was chromatographed on silica gel using 1:1 mixture of toluene and hexane. The monoalkylated product 4aand dialkylated products were obtained. Yield of monoalkylated product 14%. Yield of dialkylated product 46%.
The same procedure was applied to obtain other di and monoalkylated derivatives of proper benzoyl bromides esters.
Analytical data for final compounds (compounds $\underline{4}$ in Scheme S1.)

6/1 (RS/RS)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.10-8.05(4 \mathrm{H}, \mathrm{m}) ; 7.55-7.50(4 \mathrm{H}, \mathrm{m}) ; 7.50-7.44(4 \mathrm{H}, \mathrm{m}) ; 7.06-6.98$
$(4 \mathrm{H}, \mathrm{m}) ; 5.22-5.12(6 \mathrm{H}, \mathrm{m}) ; 1.81-1.70(4 \mathrm{H}, \mathrm{m}) ; 1.68-1.56(6 \mathrm{H}, \mathrm{m}) ; 1.47-1.23(16 \mathrm{H}, \mathrm{m}) ; 0.95-0.83(6 \mathrm{H}, \mathrm{m})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 165.9 ; 157.6 ; 141.0 ; 130.5 ; 129.8 ; 126.9 ; 115.1 ; 71.8 ; 69.4 ; 36.1 ; 31.7 ; 29.2 ; 22.6$; 14.1

Elemental analysis calculated for: $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{O}_{6} ; \mathrm{C}(77.84 \%), \mathrm{H}(8.02 \%), \mathrm{O}(14.14 \%)$. Found $\mathrm{C}(77.97 \%), \mathrm{H}(7.93 \%)$.

6/1 (R/R)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.10-8.05(4 \mathrm{H}, \mathrm{m}) ; 7.55-7.50(4 \mathrm{H}, \mathrm{m}) ; 7.50-7.43(4 \mathrm{H}, \mathrm{m}) ; 7.06-6.98$
$(4 \mathrm{H}, \mathrm{m}) ; 5.22-5.11(6 \mathrm{H}, \mathrm{m}) ; 1.81-1.70(4 \mathrm{H}, \mathrm{m}) ; 1.67-1.56(6 \mathrm{H}, \mathrm{m}) ; 1.47-1.23(16 \mathrm{H}, \mathrm{m}) ; 0.95-0.83(6 \mathrm{H}, \mathrm{m})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 165.9 ; 157.6 ; 142.0 ; 133.8 ; 129.8 ; 127.0 ; 115.1 ; 71.8 ; 69.4 ; 36.1 ; 31.7 ; 29.2 ; 25.4$; 22.6; 14.1

Elemental analysis calculated for: $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{O}_{6} ; \mathrm{C}(77.84 \%), \mathrm{H}(8.02 \%), \mathrm{O}(14.14 \%)$. Found $\mathrm{C}(77.90 \%), \mathrm{H}(7.95 \%)$.

9/1 (RS/RS)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.10-8.05(4 \mathrm{H}, \mathrm{m}) ; 7.55-7.50(4 \mathrm{H}, \mathrm{m}) ; 7.50-7.44(4 \mathrm{H}, \mathrm{m}) ; 7.06-6.98$
$(4 \mathrm{H}, \mathrm{m}) ; 5.22-5.12(6 \mathrm{H}, \mathrm{m}) ; 1.81-1.71(2 \mathrm{H}, \mathrm{m}) ; 1.68-1.56(3 \mathrm{H}, \mathrm{m}) ; 1.47-1.23(28 \mathrm{H}, \mathrm{m}) ; 0.95-0.82(6 \mathrm{H}, \mathrm{m})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 165.9 ; 157.6 ; 141.0 ; 130.5 ; 129.8 ; 126.9 ; 115.1 ; 71.8 ; 69.4 ; 36.1 ; 32.0,31.7 ; 29.2$; 25.6, 24.1, 22.6; 14.1

Elemental analysis calculated for: $\mathrm{C}_{50} \mathrm{H}_{66} \mathrm{O}_{6} ; \mathrm{C}(78.70 \%), \mathrm{H}(8.72 \%), \mathrm{O}(12.58 \%)$. Found $\mathrm{C}(78.91 \%) \mathrm{H}(8.73 \%)$.

10/1 (RS/RS)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.10-8.05(4 \mathrm{H}, \mathrm{m}) ; 7.55-7.51(4 \mathrm{H}, \mathrm{m}) ; 7.50-7.43(4 \mathrm{H}, \mathrm{m}) ; 7.06-6.98$
$(4 \mathrm{H}, \mathrm{m}) ; 5.22-5.12(6 \mathrm{H}, \mathrm{m}) ; 1.81-1.72(2 \mathrm{H}, \mathrm{m}) ; 1.67-1.56(3 \mathrm{H}, \mathrm{m}) ; 1.47-1.23(30 \mathrm{H}, \mathrm{m}) ; 0.95-0.83(6 \mathrm{H}, \mathrm{m})$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 165.9 ; 157.5 ; 141.0 ; 130.1 ; 129.8 ; 127.0 ; 115.1 ; 71.8 ; 69.4 ; 36.2 ; 32.3,31.7 ; 29.2$; 25.8, 24.0, 22.6; 14.1

Elemental analysis calculated for: $\mathrm{C}_{52} \mathrm{H}_{7} \mathrm{OO}_{6} ; \mathrm{C}(78.95 \%), \mathrm{H}(8.92 \%), \mathrm{O}(12.13 \%)$. Found ; $\mathrm{C}(79.13 \%) ; \mathrm{H}(8.94 \%)$.

9/2 (RS/RS)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.10-8.05(4 \mathrm{H}, \mathrm{m}) ; 7.55-7.50(4 \mathrm{H}, \mathrm{m}) ; 7.50-7.45(4 \mathrm{H}, \mathrm{m}) ; 7.05-6.99$
$(4 \mathrm{H}, \mathrm{m}) 5.17(4 \mathrm{H}, \mathrm{s}) ; 5.13-5.04(2 \mathrm{H}, \mathrm{m}) ; 1.77-1.59(8 \mathrm{H}, \mathrm{m}) ; 1.44-1.18(28 \mathrm{H}, \mathrm{m}) ; 0.95(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 0.87(6 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 166.1 ; 157.6 ; 142.0 ; 130.4 ; 129.9 ; 127.8 ; 126.9 ; 115.1 ; 69.5 ; 33.7 ; 31.9 ; 29.5 ; 22.7$; 14.1; 9.7

Elemental analysis calculated for: $\mathrm{C}_{52} \mathrm{H}_{70} \mathrm{O}_{6} ; \mathrm{C}(78.95 \%), \mathrm{H}(8.92 \%), \mathrm{O}(12.13 \%)$. Found $\mathrm{C}(79.09 \%) \mathrm{H}(8.88 \%)$.

4/4

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.09-8.03(4 \mathrm{H}, \mathrm{m}) ; 7.54-7.43(8 \mathrm{H}, \mathrm{m}) ; 7.04-6.98(4 \mathrm{H}, \mathrm{m}) ; 5.20-5.11$ ($6 \mathrm{H}, \mathrm{m}$); 1.791.54 ($8 \mathrm{H}, \mathrm{m}$); 1.47-1.20 (16H, m); 0.91-0.83 ($12 \mathrm{H}, \mathrm{m}$)
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 165.9 ; 157.6 ; 141.9 ; 129.8 ; 127.8 ; 126.9 ; 115.11 ; 109.9 ; 71.8 ; 69.4 ; 36.0 ; 31.7 ; 29.5$; 25.4; 22.7; 20.1; 14.1

Elemental analysis calculated for: $\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{O}_{6} ; \mathrm{C}(78.15 \%), \mathrm{H}(8.27 \%)$. Found ; $\mathrm{C}(78.31 \%), \mathrm{H}(8.24 \%)$.

Preparation of (R/S)-1-methylpentyl-4-(4'-hydroxybiphenyl-4-yloxymethyl)benzoate $\mathbf{5}$

To a gently heated solution $\left(45-50^{\circ} \mathrm{C}\right)$ of $4,4^{\prime}$-dihydroxybiphenyl $(11.14 \mathrm{~g}, 59.8 \mathrm{mmol})$, potassium iodide (14.61 g , 88.0 mmol) and potassium carbonate ($14.59 \mathrm{~g} ; 105.6 \mathrm{mmol}$) in 340 mL of 1 -methyl-2-pyrrolidinone a (R/S)-1-methylheptyl-4-(bromomethyl)-benzoate $\mathbf{3}(11,51 \mathrm{~g}, 35.2 \mathrm{mmol})$ was slowly added. The reaction mixture was further stirred for 24 h at $120^{\circ} \mathrm{C}$. After that, the mixture was cooled to a room temperature and poured into water with ice. Brown precipitate was dried and the crude product was chromatographed on silica gel using a 1% methanol in chloroform - mixture as eluent. The monoalkylated product $\underline{\mathbf{5}}$ and dialkylated products were obtained. Yield of monoalkylated product 41%.
The same synthetic procedure has been applied in reaction of excess of (R)-1-methylheptyl-4-(bromomethyl)benzoate with (R/S)-1-methylpentyl-4-(4'-hydroxybiphenyl-4-yloxymethyl)benzoate $\underline{\mathbf{5}}$ to obtain_the final compound $\underline{6}(6 / 1(\mathrm{R} / \mathrm{RS}))$.

Analytical data for compound 5 .
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.08(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}) ; 7.55-7.36(6 \mathrm{H}, \mathrm{m}) ; 7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8) ; 6.89$
$(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6) 5.21-5.09(3 \mathrm{H}, \mathrm{m}) ; 1.82-1.70(2 \mathrm{H}, \mathrm{m}) ; 1.67-1.58(3 \mathrm{H}, \mathrm{m}) ; 1.47-1.22(8 \mathrm{H}, \mathrm{m}) ; 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}) ;$
Analytical data of final compound $\mathbf{6}$:

6/1 (RS/R)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.10-8.05(4 \mathrm{H}, \mathrm{m}) ; 7.55-7.50(4 \mathrm{H}, \mathrm{m}) ; 7.50-7.44(4 \mathrm{H}, \mathrm{m}) ; 7.06-6.98$ $(4 \mathrm{H}, \mathrm{m}) ; 5.22-5.12(6 \mathrm{H}, \mathrm{m}) ; 1.81-1.71(4 \mathrm{H}, \mathrm{m}) ; 1.69-1.56(6 \mathrm{H}, \mathrm{m}) ; 1.47-1.23(16 \mathrm{H}, \mathrm{m}) ; 0.94-0.84(6 \mathrm{H}, \mathrm{m})$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 165.9 ; 157.6 ; 141.9 ; 133.8 ; 129.8 ; 127.8 ; 126.9 ; 115.1 ; 71.8 ; 69.4 ; 36.1 ; 31.7 ; 25.4$; 22.6; 20.1; 14.1

Elemental analysis calculated for: $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{O}_{6} ; \mathrm{C}(77.84 \%), \mathrm{H}(8.02 \%), \mathrm{O}(14.14 \%)$. Found $\mathrm{C}(77.85 \%), \mathrm{H}(8.04 \%)$.

