Supporting Information

Depressed transition temperature of $W_x V_{1-x} O_2$: mechanistic insights

from the X-ray absorption fine structure (XAFS) spectroscopy

Yanfei Wu,^{ab} Lele Fan,^b Weifeng Huang,^b Shuangming Chen,^b Shi Chen,^b Feihu Chen,^b Chongwen Zou,^{*b} and Ziyu Wu^{*abc}

^a Department of Physics, University of Science and Technology of China, Hefei,

230026, People's Republic of China

^b National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.

^cInstitute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, People's Republic of China

V K-edge XANES spectra of the standard samples

Fig. S1. V K–edge XANES spectra of the standard samples (V_2O_3 , VO_2 and V_2O_5). All of these samples were used in construction of the 1s \rightarrow 4p peak position plot and to derive a calibration curve, as shown in Fig. 4b. V_2O_3 powder was prepared by the

hydrothermal method followed with the Ar annealing treatment.

Generally, the threshold, the pre-edge peak, absorption-edge, and $1s \rightarrow 4p$ transitions exhibit a monotonic dependence of their peak positions with respect to the oxidation state according to Kunzl's law.⁴⁴ The energy required to excite a core electron is increased with increasing vanadium formal oxidation state. We also measured V K-edge XANES spectra of V2O3, VO2, and V2O5 standard samples, as shown in Fig. S1. The energy positions of the $1s \rightarrow 4p$ peak and pre-edge peak were identified from the derivative spectra. For vanadium oxides, the energy position of the pre-edge peak or $1s \rightarrow 4p$ peak has a linear relationship with the oxidation state.⁴⁴ Therefore, the relative energy positions of 1s \rightarrow 4p peaks to the pre–edge peaks (E_{1s \rightarrow 4p} peak - Epre-edge peak) also has a linear relationship with the oxidation state. In our study, the energy positions of the $1s \rightarrow 4p$ peaks can not be compared because the two standard samples (V_2O_3 and V_2O_5) and $W_xV_{1-x}O_2$ samples were not measured at the same XAFS experiment. Thus we choose the relative energy positions of $1s \rightarrow 4p$ peaks to the pre-edge peaks, in order to make the comparability between the W_xV_1 . $_{\rm x}O_2$ samples and the standard samples. Then we plotted the relative energy positions of $1s \rightarrow 4p$ peaks to the pre-edge peaks as a function of the formal vanadium oxidation state to derive an approximate calibration curve, as shown in Fig. 4b, showing a linear relationship between the relative energy positions of $1s \rightarrow 4p$ peaks to the pre-edge peaks and the oxidation states. The W_xV_{1-x}O₂ samples were indicated on this calibration curve. This provides a good method to obtain insight into the oxidation state of V atoms.