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Appendix A: Derivation of the three-spin density matrix 

 

The Liouville-von-Neumann equation describes the temporal evolution of the spin state characterized by the time 

dependent density matrix 𝜌𝐼1𝐼2𝑆(𝑡) under the influence of the Hamiltonian ℋ𝐼1𝐼2𝑆. The time dependent density matrix 

𝜌𝐼1𝐼2𝑆(𝑡) contains all spin operators which can be generated by ℋ𝐼1𝐼2𝑆 acting on the initial singlet state 𝜌𝑝. If non-

detectable spin states are neglected the resulting system consists of six coupled linear differential equations 

characterized by the coefficients a(t), b(t), … f(t). The general time dependent form is 

 

𝜌𝐼1𝐼2𝑆(𝑡) = 𝐼1𝑧𝐼2𝑧 + 𝑎(𝑡) ∙ 𝑍𝑄𝑥 + 2 ∙ 𝑏(𝑡) ∙ 𝑍𝑄𝑦𝑆𝑧 + 𝑐(𝑡) ∙ (𝐼1𝑧 − 𝐼2𝑧)𝑆𝑧 

+2 ∙ 𝑑(𝑡) ∙ 𝑍𝑄𝑥𝑆𝑧 + 𝑒(𝑡) ∙ 𝑍𝑄𝑦 +
1

2
𝑓(𝑡)(𝐼1𝑧 − 𝐼2𝑧). 

 

Introducing Δ𝐽 = 𝐽1𝑆 − 𝐽2𝑆 and Δ𝜔 = 𝜔1 − 𝜔2 the system of six linear, coupled differentials becomes 

 
𝜕𝑎(𝑡)

𝜕𝑡
= 𝜋Δ𝐽𝑏(𝑡) +  Δ𝜔 𝑒(𝑡) 

𝜕𝑏(𝑡)

𝜕𝑡
= 2𝜋𝐽12𝑐(𝑡) − 𝜋Δ𝐽𝑎(𝑡) −  Δ𝜔𝑑(𝑡) 

𝜕𝑐(𝑡)

𝜕𝑡
= −2𝜋𝐽12𝑏(𝑡) 

𝜕𝑑(𝑡)

𝜕𝑡
= 𝜋Δ𝐽𝑒(𝑡) +  Δ𝜔𝑏(𝑡) 

𝜕𝑒(𝑡)

𝜕𝑡
= 2𝜋𝐽12𝑓(𝑡) − 𝜋Δ𝐽𝑑(𝑡) −  Δ𝜔𝑎(𝑡) 

𝜕𝑓(𝑡)

𝜕𝑡
= −2𝜋𝐽12𝑒(𝑡). 

 

The boundary condition is that that the initial state of the system  𝜌𝐼1𝐼2𝑆(𝑡 = 0) has to correspond to the singlet state 

𝜌𝑝 of parahydrogen. Solving these equations one obtains the general form of 𝜌𝐼1𝐼2𝑆(𝑡). The symmetry breaking process 

of the initial singlet state occurs continuously over a time period 𝜏. The coefficients are oscillating with frequencies 

2𝜋𝐽12√1 + 𝑥+
2 and 2𝜋𝐽12√1 + 𝑥−

2 where 𝑥− = 𝑦 − 𝑥 and 𝑥+ = 𝑦 + 𝑥.  

The steady state solution of the density matrix 𝜌𝐼1𝐼2𝑆̅̅ ̅̅ ̅̅ ̅ is obtained by the time averaged coefficients 𝑎̅ … 𝑓̅.  If we assume 

that that 𝜏−1 ≪ 2𝜋𝐽12√1 + 𝑥+
2 ,  𝑏̅ and 𝑒̅ will be equal to zero. The limiting cases  

lim
∆𝜔12⟶0

𝜌𝐼1𝐼2𝑆̅̅ ̅̅ ̅̅ ̅ = 𝐼1𝑧𝐼2𝑧 +
1

1 + 𝑦2
𝑍𝑄𝑥 +

𝑦

1 + 𝑦2
(𝐼1𝑧 − 𝐼2𝑧)𝑆𝑧 

lim
∆𝐽⟶0

𝜌𝐼1𝐼2𝑆̅̅ ̅̅ ̅̅ ̅ = 𝐼1𝑧𝐼2𝑧 +
1

1 + 𝑥2
𝑍𝑄𝑥 +

𝑥

2(1 + 𝑥2)
(𝐼1𝑧 − 𝐼2𝑧) 

agree with the known forms in case there is either no chemical shift difference between nuclei I1 I2 or no heteronuclear 

J-coupling term. 
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Appendix B: Energy Eigenvalues, transition frequencies and bandwidth 

 
Introducing  𝜐0

∗ = 𝜐0(1 + (𝛿1 + 𝛿2)/2) the energy eigenvalues of the two-spin system Hamiltonian ℋ𝐼1𝐼2
 are 

given by 

𝐸1 = ℎ (−𝜐0
∗ +

𝐽

4
)  

𝐸2 = ℎ (−
1

2
√𝐽2 + (𝛿𝜐)2 −

𝐽

4
)  

𝐸3 = ℎ (
1

2
√𝐽2 + (𝛿𝜐)2 −

𝐽

4
)  

𝐸4 = ℎ (𝜐0
∗ +

𝐽

4
). 

 

 

Note that the frequency difference 𝐸4 − 𝐸1 = ℎ ∆𝜈𝐷  defines the spectral width of the spectrum and therefore the 

minimum bandwidth of the amplifier. This is used for the analytical description of the SNR. 

The four corresponding eigenstates can be expressed in the Zeeman basis set (|αα⟩, |αβ⟩, |βα⟩, |ββ⟩) using the mixing 

angle 𝜙 =
1

2
𝑎𝑟𝑐𝑡𝑎𝑛 (𝑥−1). 

𝜑1 = (0,0,0,1) 
𝜑2 = (0, 𝑐𝑜𝑠 𝜙 , −𝑠𝑖𝑛 𝜙 , 0) 
𝜑3 = (0, 𝑠𝑖𝑛 𝜙 , 𝑐𝑜𝑠 𝜙 , 0) 

𝜑4 = (1,0,0,0) 
 

The transition frequencies between the eigenstates can be expressed in a Taylor series as a function of 𝑥 
assuming the inverse weak coupling limit (𝛿𝜐 < 𝐽). Truncation after the 4th order yields 
 

𝜐1 =
𝐸2 − 𝐸1

ℎ
≈ 𝜐0

∗ − 𝐽(1 +
1

4
𝑥2 −

1

16
𝑥4)  

𝜐2 =
𝐸4 − 𝐸3

ℎ
≈ 𝜐0

∗ −
1

4
𝑥2 +

1

16
𝑥4  

𝜐3 =
𝐸3 − 𝐸1

ℎ
≈ 𝜐0

∗ +
1

4
𝑥2 −

1

16
𝑥4  

𝜐4 =
𝐸4 − 𝐸2

ℎ
≈ 𝜐0

∗ + 𝐽(1 +
1

4
𝑥2 −

1

16
𝑥4) .  

 

These equations define the non-linear splitting. 

 

Appendix C: Line Amplitudes for thermal and parahydrogen induced polarization 

 

If a two-spin system is subjected to a 𝜋/2 x-pulse spin components will be aligned to the y-axis of a coordinate frame 

rotating at the Larmor frequency. The observable magnetization is given by 

 

〈𝐼1𝑦 + 𝐼2𝑦〉 = 𝑇𝑟 [(𝐼1𝑦 + 𝐼2𝑦) ⋅ 𝑒−
𝑖
ℏ

ℋ𝐼1𝐼2𝑡 ∙ 𝜌𝑖𝑛𝑖𝑡 ∙ 𝑒
𝑖
ℏ

ℋ𝐼1𝐼2𝑡].  

 

𝜌𝑖𝑛𝑖𝑡  defines the type of polarization which is either a thermally or a parahydrogen polarized spin state. For 

convenience a unitary transformation can be performed to change into the eigenbasis of the Hamiltonian ℋ𝐼1𝐼2. The 

unitary matrix 𝑈 is composed of the four orthonormal eigenvectors in the Zeeman basis 

𝑈 = (

1 0
0 𝑐𝑜𝑠 𝜙

0 0
  −𝑠𝑖𝑛 𝜙 0

 0  𝑠𝑖𝑛 𝜙 
 0 0

    𝑐𝑜𝑠 𝜙  0
0  1

).  

 

The corresponding expression for the Hamiltonian describing the time evolution consists of the diagonal matrix 𝜆 =
𝑑𝑖𝑎𝑔{𝐸1, 𝐸2, 𝐸3, 𝐸4} including the eigenvalues of ℋ𝐼1𝐼2. 

 



𝑒
𝑖
ℏ

𝜆𝑡 = 𝑈−1 ∙ 𝑒
𝑖
ℏ

ℋ𝐼1𝐼2𝑡 ∙ 𝑈 
 

If the sample is thermally prepolarized the initial density matrix 𝜌𝑖𝑛𝑖𝑡
𝐵𝑜𝑙𝑡𝑧  in the high temperature approximation after a 

𝜋/2 x-pulse is 

𝜌𝑖𝑛𝑖𝑡
𝐵𝑜𝑙𝑡𝑧 = 𝛽(𝐼1𝑦 + 𝐼2𝑦).   

 

With 𝛽 as defined by Eq. (4). Using these expressions and assuming β = 1 the characteristic amplitudes 𝐴𝑖
𝐵𝑜𝑙𝑡𝑧   of 

transitions for thermally polarized systems become  

 

 𝐴1
𝐵𝑜𝑙𝑡𝑧 = 𝐴4

𝐵𝑜𝑙𝑡𝑧 =
1

4
−

1

4√1 + 𝑥2
   

  𝐴2
𝐵𝑜𝑙𝑡𝑧 = 𝐴3

𝐵𝑜𝑙𝑡𝑧 =
1

4
+

1

4√1 + 𝑥2
 .   

 

For PHIP with 𝜋 2⁄  and 𝜋 4⁄    excitation pulses the amplitudes are given by 

 

 
𝐴1

𝜋
2

𝑃𝐻𝐼𝑃
= 𝐴2

𝜋
2

𝑃𝐻𝐼𝑃
= −𝐴3

𝜋
2

𝑃𝐻𝐼𝑃
= −𝐴4

𝜋
2

𝑃𝐻𝐼𝑃
=

𝑥2

4(1 + 𝑥2)3/2
 

 

 𝐴1

𝜋
4

𝑃𝐻𝐼𝑃
= −𝐴4

𝜋
4

𝑃𝐻𝐼𝑃
=

𝑥2(−1 − √2 + √1 + 𝑥2)

8(1 + 𝑥2)3/2
 

 𝐴2

𝜋
4

𝑃𝐻𝐼𝑃
= −𝐴3

𝜋
4

𝑃𝐻𝐼𝑃
=  

𝑥2(1 + √2 + √1 + 𝑥2)

8(1 + 𝑥2)3 2⁄
. 

These expressions define the sum ∑ |𝐴𝑖|𝑖  in Eq. (20). The amplitudes are the analytic description of line amplitudes 

expected in PHIP spectra which are shown in Fig. 2b. Irrespective of the applied excitation pulse the transition lines 

𝜐2 and 𝜐3 have an opposite sign of and the same magnitude of amplitudes. This explains the boundaries of the integral 

𝒮𝜐23 in Eq. (18), as for reasons of symmetry only the part of a Lorentz shaped peak which overlaps with the other 

peak of opposite sign leads to area cancelation. 

 

 

Appendix D: Signal to Noise model 
 

For a coil detected NMR signal with a constant polarization 𝑃𝑛 the 𝑆𝑁𝑅 limited by the Johnson noise (√4𝑘𝑇𝑅𝑠Δ𝜐𝐷 ) 

using the detection bandwidth  Δ𝜐𝐷 = 𝐽12 (1 + √1 + 𝑥2) (see appendix A) can be defined as 

 

𝑆𝑁𝑅 =  𝛼 
𝐵0 ⋅ 𝑃𝑛

√4𝑘𝑇𝑅𝑠 𝛥𝜐𝐷

 ∑|𝐴𝑖|

𝑖

 .  

 

For the two-spin system investigated in this article we require at least Δ𝜐𝐷  ≥ 𝜐4 − 𝜐1. From appendix C we get  

 

∑ |𝐴
𝑖

𝜋
2

𝑃𝐻𝐼𝑃
|

4

𝑖=1

=
𝑥2

(1 + 𝑥2)3/2
 

∑ |𝐴
𝑖

𝜋
4

𝑃𝐻𝐼𝑃
|

4

𝑖=1

=
𝑥2

4(1 + 𝑥2)
 𝑓𝑜𝑟 𝑥 > √2(1 + √2) 

                             =
(1 + √2)𝑥2

4 (1 + 𝑥2)3/2
 𝑓𝑜𝑟 𝑥 < √2(1 + √2). 

 

 


