Supporting Information

Long-Life Na-O₂ Batteries with High Energy Efficiency Enabled by Electrochemically Splitting NaO₂ at Low Overpotential

Ning Zhao,^{ab} Chilin Li,*a and Xiangxin Guo*a

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,

Chinese Academy of Sciences, Shanghai 200050, China

^bGraduate School of Chinese Academy of Sciences, Beijing, 100039, China

*E-mail: chilinli@mail.sic.ac.cn, xxguo@mail.sic.ac.cn

Figure S1. The typical discharge and charge curves of Na-O₂ batteries operated under (a) the static pure O₂ atmosphere and (b) the flowing Ar/O₂ (80/20 vol%) atmosphere. The batteries were tested at a current density of 67 mA g⁻¹_{carbon} (~0.1 mA cm⁻²) within a voltage range of 1.8-3.6 V. The specific capacity is calculated based on the mass of carbon in the VACNT cathodes. $E_0 = 2.27$ V denotes the thermodynamic potential based on the reaction of Na⁺ + e⁻ + O₂ \rightarrow NaO₂. $E_0 = 2.33$ V denotes the thermodynamic potential based on the reaction of 2Na⁺ + 2e⁻ + O₂ \rightarrow Na₂O₂. The reaction formulae are given according to the distinctive discharge/charge plateau potentials in combination with the phase analysis by XRD. Note that NaO₂ is the main discharge solid product in the static atmosphere, whereas it is Na₂O₂·2H₂O in the flowing atmosphere. It indicates that the discharge products and recharge curve profiles greatly depend on the working atmospheres.

Figure S2. SEM image for the NaO₂ particle consisting of stacked thin plates wired by carbon nanotubes.

Figure S3. Cycleability as a function of discharge depth for the Na-O₂ batteries under the flowing Ar/O₂ (80/20 vol%) atmosphere. (a) Cycling curves for the NaO₂ batteries tested within a voltage range of 1.8-3.25 V. (b) Cycling curves for the NaO₂ batteries tested with a cutoff discharge capacity of 1500 mAh g^{-1}_{carbon} and a cutoff charge voltage of 3.25 V. The current density for all the tests is 67 mA g^{-1}_{carbon} . For the case of full discharge, the capacity decreases drastically during the first three cycles. The released capacity during the 3rd discharge is smaller than 10% of the first discharge capacity. In the case with a cutoff discharge capacity of 1500 mAh g^{-1}_{carbon} , eight cycles without the loss of initial capacity can be maintained. The capacity is approximately 45% of the initial value at the 9th discharge.

Figure S4. Cycleability of the Na-O₂ battery operated in the flowing pure O₂ atmosphere with a cutoff discharge capacity of 750 mAh g^{-1}_{carbon} and a charge voltage of 3.6 V at the current density of 67 mA g^{-1}_{carbon} . Although fifteen cycles without the loss of initial capacity can observed, the curve profiles are not stable and change a lot especially for the charge process. The capacity fades seriously from the 16th cycle.

Figure S5. Overview SEM image for the VACNTs cathode disassembled from the Na-O₂ battery operated under the flowing pure O₂ atmosphere after full discharge (D, as shown in Figure 2b).

Figure S6. Rate performance of the Na-O₂ batteries without a pre-discharge process at low rate in the static Ar/O_2 (80/20 vol%) atmosphere.

Calculation of the thermodynamic potential based on the reaction

$$NaOH \rightarrow Na^+ + e^- + \frac{1}{2}H_2O + \frac{1}{4}O_2 \uparrow$$

The thermodynamic potential E_0 of the reaction

$$NaOH_{solid} \rightarrow Na^{+} + e^{-} + \frac{1}{2}H_2O + \frac{1}{4}O_2\uparrow$$

$$NaOH_{aqueous} \to Na^{+} + e^{-} + \frac{1}{2}H_2O + \frac{1}{4}O_2\uparrow$$
 (1)

is calculated according to

$$\Delta G_{reaction}^{\quad 0} = -nFE_0 \tag{2},$$

where *n* denotes the number of transferred electrons in the reaction (1), *F* is the Faraday constant, ΔG^0 is the Gibbs energy of the reaction (1) which can be obtained by

$$\Delta G_{reaction}^{\ 0} = \sum \Delta G_{f(reactants)}^{\ 0} - \sum \Delta G_{f(products)}^{\ 0}$$
(3)

where
$$\sum \Delta G_{f(products)}^{0} = \Delta G_{f(Na)}^{0} + \frac{1}{2}\Delta G_{f(H2O)}^{0} + \frac{1}{4}\Delta G_{f(O2)}^{0} = 0 + (-237.1 \text{ kJ mol}^{-1})/2 + 0 = -118.55$$

kJ mol⁻¹, and $\sum \Delta G_{f(reactants)}^{0} = \Delta G_{f(NaOH_{solid})}^{0}$ or $\Delta G_{f(NaOH_{aqueous})}^{0} = -379.4 \text{ kJ/mol}_{solid}$ or
 $-419.20 \text{ kJ/mol}_{aqueous}$. Therefore, $\Delta G_{reaction}^{0}$ equates to $-260.85 \text{ kJ/mol}_{solid}$ or
 $-300.65 \text{ kJ/mol}_{aqueous}$ and $E_0 = -\Delta G_{reaction}^{0}/nF \approx 2.70 \text{ V}$ (for NaOH_{solid}) or 3.12 V (for
NaOH_{aqueous}).

Calculations of the thermodynamic potential based on the reaction

$$Na_2CO_3 \rightarrow 2Na^+ + 2e^- + \frac{1}{2}O_2\uparrow + CO_2\uparrow$$

The thermodynamic potential E_0 of the reaction

$$Na_2CO_{3solid} \rightarrow 2Na^+ + 2e^- + \frac{1}{2}O_2 + CO_{2undissociated}$$

$$Na_2CO_{3aqueous} \rightarrow 2Na^+ + 2e^- + \frac{1}{2}O_2 + CO_{2undissociated}$$
(1)

is calculated according to

$$\Delta G_{reaction}^{\quad 0} = -nFE_0 \tag{2},$$

where *n* denotes to the number of transferred electrons in the reaction (1), *F* is the Faraday constant, ΔG^0 is the Gibbs energy of the reaction (1) which can be obtained by

$$\Delta G_{reaction}^{\ 0} = \sum \Delta G_{f(reactants)}^{\ 0} - \sum \Delta G_{f(products)}^{\ 0}$$
(3),

where $\sum \Delta G_{f(products)}^{0} = 2\Delta G_{f(Na)}^{0} + \frac{1}{2}\Delta G_{f(O2)}^{0} + \Delta G_{f(CO2)}^{0} = 0 + 0 + (-386.0 \text{ kJ mol}^{-1}) = -386.0 \text{ kJ}$

mol⁻¹, and
$$\sum \Delta G_{f(reactants)}^{0} = \Delta G_{f(Na_2CO_{3solid})}^{0}$$
 or $\Delta G_{f(Na_2CO_{3aqueous})}^{0} = -1044.4 \, kJ/mol_{solid}$ or $-1051.6 \, kJ/mol_{aqueous}$. Therefore, $\Delta G_{reaction}^{0}$ equates to $-658.4 \, kJ/mol_{solid}$ or

 $-665.6 \ kJ/mol_{aqueous} E_0 = -\Delta G_{reaction}^0 / nF \approx 3.41 \ V \text{ (for Na}_2\text{CO}_{3\text{solid}} \text{) or } 3.45 \ V \text{ (for Na}_2\text{CO}_{3\text{aqueous}} \text{).}$

The thermodynamic data (T = 298 K) is taken from Lange's Handbook of Chemistry, McGraw-Hill, 16^{th} Edition, 2005

Calculation of the equivalent thickness of NaO₂ pre-deposition layer formed during the pre-

discharge process

A pre-discharge at 67 mA g⁻¹_{carbon} for 1 h should yield an initial discharge capacity of 67 mAh g⁻¹_{carbon}. For the carbon mass of 1.5 mg cm⁻² in VACNT cathode, the transferred charge ($Q_{ransfer}$) should be 0.1 mAh cm⁻².

According to the reaction

$$N a^{+} + Q + e^{-} \rightarrow N a Q$$
 (1)

in combination with the Faraday rule we can obtain the relationship

$$\frac{m_{heQ_2}}{M_{heQ_2}} = \frac{Q_{ransfer}}{F}$$
(2),

where m_{heQ} is the mass of NaO₂ (per cm²) produced by the reaction (1), M_{heQ} is the relative molar mass of NaO₂ (54.99 g mol⁻¹), F is the Faraday constant (96485.3365 C mol⁻¹). Thus m_{heQ} is calculated to be 0.2 mg cm⁻². According to the theoretical density of NaO₂ (2.20 g cm⁻³), the volume of NaO₂ per cm² is 9.1×10⁻⁵ cm³.

It is known that the VACNTs are 1.5 mg cm⁻² in mass with a specific surface area of 80 m² g⁻¹, the VACNTs per cm² should have the surface area of 1.2×10^3 cm²

Consequently, the equivalent thickness of the NaO₂ layer uniformly deposited on VACNT surface is calculated to be 9.1×10^{-5} cm³/ 1.2×10^{3} cm² = ~1 nm.