ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Electronically Tunable Anion–π Interactions in Pyrylium Complexes: Experimental and Theoretical Studies

Antonio Franconetti,^{*a*} Lidia Contreras-Bernal,^{*a*} Sorel Jatunov,^{*a*} Manuel Gómez-Guillén,^{*a*} Manuel Angulo,^{*b*} Rafael Prado-Gotor,^{*c*} and Francisca Cabrera-Escribano*,^{*a*}

^a Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, 41012 Sevilla, Spain

^b Servicio de Resonancia Magnética Nuclear, CITIUS, Universidad de Sevilla, Avda. Reina Mercedes 4, 41012 Sevilla, Spain

^c Departamento de Química Física, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, 41012 Sevilla, Spain

Corresponding author: <u>fcabrera@us.es</u>

Contents:

- **1.** General Methods
- 2. Synthesis and spectral data of chalcone (2-9).
- 3. Synthesis and spectra data of pyrylium salts (10-28)
- 4. Hammett substituent constants for the pyrylium salts used in this work (Table S1).
- **5.** UV-vis absorption and fluorescence data of some pyrylium tetrafluoroborate (**Table S2**).
- **6.** Tetrafluoroborate anion chemical shift in ¹⁹F NMR for different pyrylium salts for coupling with ¹⁰B *vs.* molecular weight of the pyrylium cation (**Fig. S1**).
- **7.** Tetrafluoroborate anion chemical shift in ¹⁹F NMR for different pyrylium salts for coupling with ¹⁰B *vs.* Hammett constants (**Fig. S2**).
- 8. UV-vis absorption spectra and titration of pyrylium tetrafluoroborate 14 in MeOH (Fig. S3).
- **9.** UV-vis absorption spectra in CH₂Cl₂ and time-dependence spectrum in DMSO of pyrylium tetrafluoroborate **10** (**Fig. S4**).
- 10. ¹H NMR spectra of compound 10 in DMSO- d_6 and decomposition after cycles of UV radiation (Fig. S5)
- 11. Fluorescence spectra of pyrylium tetrafluoroborates 13, 14, 15 and 22 (Fig. S6).
- Cartesian Coordinates for pyrylium complexes 10, 13, 14, 27 and 28 (Table S3-S7).

- Tetrafluoroborate anion chemical shift in ¹⁹F NMR for different pyrylium salts *vs*. theoretical Binding Energies calculated at M06-2X/6-31G (d) level of theory (Fig. S7)
- 14. ¹H and ¹³C NMR spectra of new pyrylium compounds. (Fig. S8 S31)
- 15. ¹⁹F NMR spectra of pyrylium salts. (Fig. S32 S46)

1. General Methods

All chemicals were purchased and used without further purification. Evaporations were conducted under reduced pressure. TLC was performed on aluminium sheets coated with Kieselgel 60 F₂₅₄; detection of compounds was accomplished with UV light (254 and 360 nm) and by charring with 10% H₂SO₄ or an anisaldehyde reagent. Silica gel 60 (230 mesh) was used for preparative column chromatography. Infrared (IR) spectra were recorded on a Jasco FT/IR-4100 spectrophotometer. UV-vis measurements were recorded on a Jasco V-630 spectrophotometer. Fluorescence measurements were carried out at 298.2 K in a spectrofluorimeter (Hitachi f-2500), interfaced to a PC for the reading and handling of the spectra. Acetone was used as solvent. Intensity measurements were performed at pyrylium complexes concentrations low enough to avoid inner filter effects (and other artifacts). In all cases, the sample absorbance measured at the excitation wavelength did not exceed 0.1. The selected excitation wavelength corresponded to the maximum of the UV-visible spectra for each complex and total luminescence intensity was recorded from 400-700 nm. It was checked that the results were independent of the excitation wavelength, provided that this one was in the range from 350 to 550 nm. ¹H (and ¹³C) NMR spectra were recorded at 300 (75.5 for ¹³C) and 500 (125.7 and 470 for ¹³C and ¹⁹F, respectively) MHz. Chemical shifts (δ) are expressed in ppm, referenced from TMS or by using the solvent peak as internal reference. Coupling constants (J) are expressed in Hz. Standard pulse sequences were used for 2D spectra. COSY, NOESY (mixing times: 400 and 500 ms), ¹H ¹³C HSQC, and ¹H ¹³C HMBC (optimized for a coupling constant of 8 Hz) experiments were used to assist NMR assignments. Mass spectra were recorded by using either CI, or EI techniques at 70 eV for EI and at 150 eV for CI. HRMS measurements were made with resolutions of 10000, by using a magnet sector analyzer.

2. Synthesis and spectral data of Chalcones

General Procedure

An equimolar mixture of *p*-substituted benzaldehyde and *p*-substituted acetophenone was dissolved in absolute EtOH. A solution of aqueous 2M NaOH (4 mol-eq) was added dropwise to the stirred mixture, and water was then added. The system was stirred at room temperature for a time between few minutes and hours, until precipitation of a solid occurred. The solid product was collected by filtration and washed with cold EtOH. The product was crystallized from EtOH to obtain a pure chalcone.

4-Phenylchalcone (2)

Application of the general procedure, starting from biphenyl-4-carboxaldehyde (200 mg, 1.1 mmol) and acetophenone (129 μ L, 1.1 mmol) in EtOH (10 mL), after stirring the mixture for 30 min, and crystallization of the formed precipitate from EtOH, led to pure compound **2** (127.4 mg, 41 %) as a white solid; ¹H NMR (300 MHz, CDCl₃): δ = 8.04 (m, 2H), 7.86 (d, 1H, *J* = 15.7 Hz), 7.75-7.39 (m, 13H).

4'-Methyl-4-phenylchalcone (3)

Biphenyl-4-carboxaldehyde (200 mg, 1.1 mmol) and 4-methylacetophenone (155 μ L, 1.1 mmol) in EtOH (10 mL) reacted following the general procedure, under stirring for 40 min, to afford compound **3** (249.3 mg, 76 %), pure enough to be used for further transformation; ¹H NMR (300 MHz, CDCl₃): δ = 7.96 (d, 2H, *J* = 8.2 Hz), 7.85 (d, 1H, *J* = 15.7 Hz), 7.74-7.62 (m, 7H), 7.57 (d, 1H, *J* = 15.7 Hz), 7.47 (t, 2H, *J* = 7.0 Hz), 7.38 (m, 1H), 7.32 (d, 2H, *J* = 8.1 Hz), 2.45 (s, 3H).

4-Fluorochalcone (4)

Application of the general procedure to 4-fluorobenzaldehyde (177 µL, 1.61 mmol) and acetophenone (188 µL, 1.61 mmol) in EtOH (5 mL), after stirring for 18 min, led to compound **4** (236.2 mg, 65 %), pure enough to be used for further transformation; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.02$ (dd, 2H, J = 1.5, J = 8.4 Hz), 7.78 (d, 1H, J = 15.7 Hz), 7.64 (dd, 2H, J = 5.4, J = 8.7 Hz), 7.59 (m, 1H), 7.52 (d, 2H, J = 7.6 Hz), 7.46 (d, 1H, J = 15.5 Hz), 7.12 (t, 2H, J = 8.6 Hz).

4,4'-Difluorochalcone (5)

Starting from 4-fluorobenzaldehyde (177 µL, 1.61 mmol) and 4-fluoroacetophenone (196 µL, 1.61 mmol) in EtOH (5 mL), application of the general procedure (stirring time: 2 min) afforded crystalline compound **5** (320.1 mg, 81 %), pure enough to be used for further transformation; ¹H NMR (300 MHz, CDCl₃): δ = 8.06 (dd, 2H, *J* = 5.4, *J* = 8.9 Hz), 7.78 (d, 1H, *J* = 15.7 Hz), 7.64 (dd, 2H, *J* = 5.4, *J* = 8.6 Hz), 7.43 (d, 1H, *J* = 15.7 Hz), 7.12 (t, 2H, *J* = 8.6 Hz).

4'-Fluoro-4-nitrochalcone (6)

Application of the general procedure to 4-nitrobenzaldehyde (200 mg, 1.32 mmol) and 4-fluoroacetophenone (161 μ L, 1.32 mmol) in EtOH (10 mL) (stirring time: 2 min)

afforded crystalline compound **6** (200.7 mg, 56 %), pure enough to be used for further transformation; ¹H NMR (300 MHz, CDCl₃): δ = 8.29 (d, 2H, *J* = 8.9 Hz), 8.08 (dd, 2H, *J* = 5.4, *J* = 8.9 Hz), 7.83 (d, 1H, *J* = 15.4 Hz), 7.79 (d, 2H, *J* = 8.7 Hz), 7.61 (d, 1H, *J* = 15.7 Hz), 7.21 (t, 2H, *J* = 8.6 Hz).

4'-Methyl-4-nitrochalcone (7)

Starting compounds: 4-nitrobenzaldehyde (200 mg, 1.32 mmol) and 4methylacetophenone (186 μ L, 1.32 mmol) in EtOH (10 mL); stirring time: 2 min; crystallization from EtOH. Data of the obtained product **8** (255.5 g, 72 %), white solid; ¹H NMR (300 MHz, CDCl₃): δ = 8.28 (d, 2H, *J* = 8.8 Hz), 7.95 (d, 2H, *J* = 8.2 Hz), 7.81 (d, 1H, *J* = 15.6 Hz), 7.78 (d, 2H, *J* = 8.7 Hz), 7.64 (d, 1H, *J* = 15.8 Hz), 7.33 (d, 2H, *J* = 8.1 Hz), 2.45 (s, 3H).

4-Methoxy-4'-methylchalcone (8)

Starting compounds: *p*-anisaldehyde (178 µL, 1.47 mmol) and 4-methylacetophenone (207 µL, 1.47 mmol) in EtOH (10 mL); stirring time: 2 h. Data of the obtained product **8** (238.6 mg, 64 %), pure enough to be used for further transformation; ¹H NMR (300 MHz, CDCl₃): δ = 7.93 (d, 2H, *J* = 8.2 Hz), 7.76 (d, 1H, *J* = 15.6 Hz), 7.60 (d, 2H, *J* = 8.8 Hz), 7.42 (d, 1H, *J* = 15.6 Hz), 7.30 (d, 2H, *J* = 8.0 Hz), 6.94 (d, 2H, *J* = 8.8 Hz), 3.86 (s, 3H), 2.44 (s, 3H).

4'-Fluoro-4-methoxychalcone (9)

Starting compounds: *p*-anisaldehyde (178 µL, 1.47 mmol) and 4-fluoroacetophenone (179 µL, 1.47 mmol) in EtOH (4 mL); stirring time: 30 min. Data of the obtained product **9** (196.8 mg, 52 %), pure enough to be used for further transformation; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.05$ (dd, 2H, J = 5.4, J = 9.0 Hz), 7.79 (d, 1H, J = 15.6 Hz), 7.60 (d, 2H, J = 8.6 Hz), 7.38 (d, 1H, J = 15.6 Hz), 7.17 (t, 2H, J = 8.7 Hz), 6.94 (d, 2H, J = 8.8 Hz), 3.86 (s, 3H).

3. Synthesis and spectral data of Pyrylium Salts.

2,4,6-Triphenylpyrylium Tetrafluoroborate (10)³⁴

Route I. Starting compounds: benzaldehyde (1.02 mL, 10.1 mmol) and acetophenone (2.4 mL, 20.8 mmol). Refluxing time: 24 h. Crystallization from 1,2-dichloroethane led to compound **10** (1.01 g, 32 %) as a yellow solid.

Route II. Starting compounds: chalcone **1** (500 mg, 2.40 mmol) and acetophenone (840 μ L, 7.20 mmol) in CH₂Cl₂ (2 mL). Refluxing time: 20 h. Crystallization from 1,2dichloroethane afforded compound **10** (254 mg, 34 %) as a yellow solid. ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.17 (s, 2H, H-3 and H-5), 8.60 (d, 6H, *J* = 7.5 Hz, H-2a, 6a, 2b, 6b, 2c and 6c), 7.88 (t, 3H, *J* = 7.5 Hz, H-4a, 4b and 4c), 7.81 (t, 6H, *J* = 8.0 Hz, H-3a, 5a, 3b, 5b, 3c and 5c); ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -148.3269 (br s, ¹⁰BF₄⁻), -148.3812 (*J*_{F,B11} = 1.1 Hz, ¹¹BF₄⁻).

2,6-Di-(4-methylphenyl)-4-phenylpyrylium tetrafluoroborate (11)³⁵

Starting compounds: benzaldehyde (476 µL, 4.71 mmol) and 4-methylacetophenone (943 µL, 7.07 mmol). Refluxing time: 9 h. Crystallization from acetone led to pure compound **11** (189.1 mg, 12 %) as a yellow solid; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.05 (s, 2H, H-3 and H-5), 8.56 (d, 2H, *J* = 8.2 Hz, H-2a and 6a), 8.48 (d, 4H, *J* = 8.3 Hz, H-2b, 6b, 2c and 6c), 7.86 (t, 1H, *J* = 7.4 Hz, H-4a), 7.77 (t, 2H, *J* = 8.0 Hz, H-3a and 5a), 7.61 (d, 4H, *J* = 8.1 Hz, H-3b, 5b, 3c and 5c), 2.51 (s, 6H, *CH*₃); ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -148.3251 (br s, ¹⁰BF₄⁻), -148.3793 (*J*_{F,B11} = 1.1 Hz, ¹¹BF₄⁻).

4-Biphenyl-2,6-diphenylpyrylium tetrafluoroborate (12)³⁶

Starting compounds: chalcone **2** (127 mg, 0.45 mmol) and acetophenone (156.3 μ L, 1.34 mmol) in CH₂Cl₂ (4 mL). Refluxing time: 21 h. Treatment with ice-water (5 mL) and EtOH (4 mL) afforded pure compound **12** (95 mg, 70 %) as an orange solid; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.21 (s, 2H, H-3 and H-5), 8.75 (d, 2H, *J* = 8.6 Hz, H-2a and 6a), 8.61 (d, 4H, *J* = 8.2, H-2b, 6b, 2c and 6c), 8.12 (d, 2H, *J* = 8.6 Hz, H-3a and 5a), 7.94 (d, 2H, *J* = 8.1 Hz, H-2d and 6d), 7.88 (t, 2H, *J* = 7.4 Hz, H-3d and 5d), 7.81 (t, 4H, *J* = 7.9 Hz, H-3b, 5b, 3c and 5c), 7.58 (t, 2H, *J* = 7.2 Hz, H-4b and 4c), 7.52 (t, 1H, *J* = 7.3 Hz, H-4d); ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -148.3182 (br s, ¹⁰BF₄⁻), -148.3725 (*J*_{F,B11} = 1.1 Hz, ¹¹BF₄⁻).

4-Biphenyl-2,6-di-(4-methylphenyl)pyrylium tetrafluoroborate (13)

Starting compounds: chalcone **3** (100 mg, 0.34 mmol) and 4-methylacetophenone (134 μ L, 1.0 mmol) in CH₂Cl₂ (1 mL). Refluxing time: 37 h. Crystallization from 1,2dichloroethane afforded pure compound **13** (45.2 mg, 32 %) as an orange solid; m.p. (decomp.) 291-292 °C. IR 1597, 1481, 1458, 1002, 840, 817, 765, 727, 687 cm⁻¹. UVvisible: λ_{max} (acetone) 418 nm; (DMSO) 422, 344, and 326 nm. ¹H NMR (500 MHz, DMSO-*d*₆): δ =9.09 (s, 2H, H-3 and H-5), 8.70 (d, 2H, *J* = 8.6 Hz, H-2a and 6a), 8.49 (d, 4H, *J* = 8.3 Hz, H-2b, 6b, 2c and 6c), 8.09 (d, 2H, *J* = 8.5 Hz, H-3a and 5a), 7.92 (d, 2H, *J* = 8.6 Hz, H-2d and 6d), 7.61 (d, 4H, *J* = 8.3 Hz, H-3b, 5b, 3c and 5c), 7.58 (t, 2H, *J* = 7.8 Hz, H-3d and 5d), 7.51 (t, 1H, *J* = 7.3 Hz, H-4d), 2.52 (s, 6H, C*H*₃); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 169.1$ (C-2 and C-6), 166.6 (C-4), 146.3, 146.1, 138.1, 131.4, 130.7 (C-2a and 6a), 130.5 (C-3b, 5b, 3c and 5c), 129.2 (C-3d and 5d), 129.1 (C-4d), 128.7 (C-2b, 6b, 2c and 6c), 127.8 (C-3a and 5a), 127.3 (C-2d and 6d), 126.6, 113.9 (C-3 and C-5), 21.5 (CH₃); ¹⁹F NMR (470 MHz, DMSO- d_6): $\delta = -148.3178$ (¹⁰B F_4^-), -148.3720 ($J_{F,B11} = 1.1 \text{ Hz}$, ¹¹B F_4^-). CIHRMS: m/z 414.1983, calcd for C₃₁H₂₆O⁺ + H: 414.1984.

2-(4-Fluorophenyl)-4,6-diphenylpyrylium tetrafluoroborate (14)

Starting compounds: chalcone **1** (200 mg, 0.96 mmol) and 4-fluoroacetophenone (350 μ L, 2.88 mmol) in CH₂Cl₂ (2 mL). Refluxing time: 23 h. Crystallization from 1,2 dichloroethane led to pure compound **14** (91.9 mg, 29 %) as a yellow solid; IR: 1621, 1589, 1491, 1466, 1241, 1164, 1031, 840, 770 and 676 cm⁻¹; UV-visible: λ_{max} (acetone) 409 and 356 nm; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.16 (s, 2H, H-3 and H-5), 8.70 (dd, 2H, *J* = 5.2, *J* = 9.0 Hz, H-2b and 6b), 8.60 (4H, *J* = 7.7 Hz, H-2a, 6a, 2c and 6c), 7.88 (t, 2H, *J* = 7.4 Hz, H-4a and 4c), 7.80 (dt, 4H, 2H, *J* = 3.0, *J* = 8.0 Hz, H-3a, 5a, 3c and 5c), 7.67 (t, 2H, *J* = 8.8 Hz, H-3b and 5b); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 170.0 (*C*-6), 169.2 (*C*-2), 166.1 (d, *J* = 255.9 Hz, *C*-4b), 165.1 (*C*-4), 135.2 (*C*-4c), 135.0 (*C*-4a), 132.5 (*C*-1a or *C*-1c), 132.0 (d, *J* = 9.9 Hz, *C*-2b and 6b), 130.0 (*C*-2a and 6a), 129.9 (*C*-3a, 5a, 3c and 5c), 129.1 (*C*-1c or *C*-1a), 128.9 (*C*-2c and 6c), 125.9 (d, *J* = 2.4 Hz, *C*-1b), 117.3 (d, *J* = 22.3 Hz, *C*-3b and 5b), 115.2 (*C*-3 or *C*-5), 115.1 (*C*-5 or *C*-3); ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -102.28 (m, C-*F*), -148.3250 (br s, ¹⁰BF₄⁻), -148.3804 (*J*_{F,B11} = 1.1 Hz, ¹¹BF₄⁻). CIHRMS: *m*/*z* 328.1255, calcd for C₂₃H₁₇OF⁺ + H: 328.1263.

4-(4-Fluorophenyl)-2,6-diphenylpyrylium tetrafluoroborate (15)³⁷

Starting compounds: 4-fluorobenzaldehyde (432 µL, 4.03 mmol) and acetophenone (940 µL, 8.06 mmol). Refluxing time: 24 h. Crystallization from acetone afforded pure compound **15** (705.5 mg, 53 %) as a yellow solid; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.16 (s, 2H, H-3 and H-5), 8.73 (dd, 2H, *J* = 5.4, *J* = 9.0 Hz, H-2a and 6a), 8.59 (d, 4H, *J* = 7.5, H-2b, 6b, 2c and 6c), 7.88 (t, 2H, *J* = 7.5 Hz, H-4b and 4c), 7.80 (t, 4H, *J* = 8.0 Hz, H-3b, 5b, 3c and 5c), 7.68 (t, 2H, *J* = 8.8 Hz, H-3a and 5a); ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -102.41 (m, C-*F*), -148.3230 (br s, ¹⁰B*F*₄⁻), -148.3771 (*J*_{F,B11} = 1.1 Hz, ¹¹B*F*₄⁻).

4,6-Di-(4-fluorophenyl)-2-phenylpyrylium tetrafluoroborate (16)

Starting compounds: chalcone **4** (100 mg, 0.44 mmol) and 4-fluoroacetophenone (161 μ L, 1.33 mmol) in CH₂Cl₂ (1 mL). Refluxing time: 22 h. Crystallization from 1,2 dichloroethane led to pure compound **16** (32.6 mg, 21 %) as a yellow solid; IR: 1629, 1594, 1493, 1231, 1164, 1055, 840, 777 and 684 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 9.14$ (br d, J = 1.7, 1H, H-3 or H-5), 9.12 (s,1H, H-5 or H-3), 8.74-8.66 (m, 4H, H-2a, 6a, 2c and 6c), 8.58 (d, 2H, J = 7.6, H-2b and 6b), 7.88(t, 1H, J = 7.1, H-4b), 7.80 (t, 2H, J = 7.9, H-3b and 5b), 7.69-7.64 (m, 4H, H-3a, 5a, 3c and 5c); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 170.0$ (*C*-6), 169.1 (*C*-2), 165.1 (*C*-4) 135.0 (*C*-4c), 166.5 (d, J = 255.6

Hz, C-4a or C-4b), 166.1 (d, J = 255.6 Hz, C-4b or C-4a), 133.3 (d, J = 9.6 Hz, C-2a and 6a), 132.0 (d, J = 9.8 Hz, C-2b and 6b), 129.8 (C-3c and 5c), 129.1 (C-1c), 129.0 (d, J = 2.2 Hz, C-1a), 128.8 (C-2c and 6c), 125.8 (d, J = 2.3 Hz, C-1b), 117.2 (d, J = 22.5 Hz, C-3b and 5b), 117.1 (d, J = 22.0 Hz, C-3b and 5b), 114.9 (C-5), 114.8 (C-3); ¹⁹F NMR (470 MHz, DMSO- d_6): $\delta = -102.25$ (m, C-F), -102.33 (m, C-F), -148.3192 (br s, $^{10}BF_4^-$), -148.3736 ($J_{F,B11} = 1.1$ Hz, $^{11}BF_4^-$). CIHRMS: m/z 346.1163, calcd for C₂₃H₁₆OF₂⁺ + H: 346.1169.

2,6-Di-(4-fluorophenyl)-4-phenylpyrylium tetrafluoroborate (17)³⁵

Starting compounds: benzaldehyde (303 µL, 3.0 mmol) and 4-fluoroacetophenone (728 µL, 6.0 mmol). Refluxing time: 16 h. Treatment with Et₂O (4 mL) and crystallization from 1,2-dichloroethane afforded pure compound **17** (393 mg, 38 %) as a yellow solid; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.14 (s, 2H, H-3 and H-5), 8.69 (dd, 4H, *J* = 5.2, *J* = 9.0 Hz, H-2b, 6b, 2c and 6c), 8.59 (d, 2H, *J* = 7.4, H-2a and 6a), 7.88 (t, 1H, *J* = 7.5, H-4a), 7.79 (t, 2H, *J* = 8.1, H-3a and 5a), 7.66 (t, 4H, *J* = 8.8, H-3b, 5b, 3c and 5c); ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -102.27 (m, C-*F*), -148.3192 (br s, ¹⁰B*F*₄⁻), -148.3730 (*J*_{F,B11} = 1.1 Hz, ¹¹B*F*₄⁻).

2,4,6-Tri-(4-fluorophenyl)pyrylium tetrafluoroborate (18)38

Starting compounds: chalcone **5** (100 mg, 0.41 mmol) and 4-fluoroacetophenone (149 μ L, 1.23 mmol) in CH₂Cl₂ (1 mL). Refluxing time: 24 h. The mixture was diluted with CH₂Cl₂ (10 mL), thus obtaining a precipitate of compound **18** (28.3 mg, 19 %) as a yellow solid, pure enough for characterization; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.12 (s, 2H, H-3 and H-5), 8.71 (dd, 2H, *J* = 5.4, *J* = 9.0 Hz, H-2a and 6a), 8.68 (dd, 4H, *J* = 5.3, *J* = 9.0 Hz, H-2b, 6b, 2c and 6c), 7.67 (m, 6H, H-3a, 5a, 3b, 5b, 3c and 5c); ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -102.24 (m, C-*F*), -148.3112 (br s, ¹⁰B*F*₄⁻), -148.3656 (*J*_{F,B11} = 1.1 Hz, ¹¹B*F*₄⁻).

4-(4-Nitrophenyl)-2,6-diphenylpyrylium tetrafluoroborate (19)³⁹

Starting compounds: 4-nitrobenzaldehyde (500 mg, 3.31 mmol) and acetophenone (579 μ L, 4.97 mmol) in toluene (2 mL). Refluxing time: 19 h. Crystallization from 1,2dichloroethane afforded pure compound **19** (84 mg, 9 %) as a yellowish solid; ¹H NMR (500 MHz, DMSO-*d*₆): δ =9.28 (s, 2H, H-3 and H-5), 8.78 (d, 2H, *J* = 8.7 Hz, H-2a and 6a), 8.63 (d, 4H, *J* = 7.4 Hz, H-2b, 6b, 2c and 6c), 8.57 (d, 2H, *J* = 8.9 Hz, H-3a and 5a), 7.91 (t, 2H, *J* = 7.4 Hz, H-4b and 4c), 7.83 (t, 4H, *J* = 8.0 Hz, H-3b, 5b, 3c and 5c); ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -148.3193 (br s, ¹⁰BF₄⁻), -148.3731 (*J*_{F,B11} = 1.1 Hz, ¹¹BF₄⁻).

6-(4-Fluorophenyl)-4-(4-nitrophenyl)-2-(phenyl)pyrylium tetrafluoroborate (20)

Starting compounds: chalcone **6** (69 mg, 0.27 mmol) and 4-fluoroacetophenone (131.1 μ L, 0.54 mmol) in CH₂Cl₂ (2 mL). Refluxing time: 22 h. Crystallization from 1,2-dichloroethane afforded pure compound **20** (2 mg, 2 %) as an orange solid; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 9.27 (s, 1H, H-3 or H-5), 9.13 (s, 1H, H-5 or H-3), 8.78 (d,

2H, J = 8.9 Hz, H-2a and 6a), 8.73 (dd, 2H, J = 5.6 and J = 9.1 Hz, H-2c and 6c), 8.61 (d, 2H, J = 7.5 Hz, H-3a and 5a), 8.57 (d, 2H, J = 8.7 Hz, H-3b and 5b), 7.82 (t, 2H, J = 7.7 Hz, H-3c and 5c), 7.68 (d, 2H, J = 8.4 Hz, H-2b and 6b), 7.56 (t, 1H, J = 7.9 Hz, H-4b).

2-(4-Fluorophenyl)-6-(4-methylphenyl)-4-(4-nitrophenyl)pyrylium tetrafluoroborate (21)

Starting compounds: chalcone 7 (100 mg, 0.37 mmol) and 4-fluoroacetophenone (46 μ L, 0.37 mmol) in CH₂Cl₂ (1 mL). Refluxing time: 22 h. Crystallization from 1,2-dichloroethane led to pure compound **21** (79.7 mg, 56 %) as an orange solid; ¹H NMR (300 MHz, DMSO-*d*₆): δ = 9.21 (s, 1H, H-3 or H-5), 9.19 (s, 1H, H-5 or H-3), 8.76 (d, 2H, *J* = 8.9 Hz, H-2a and 6a), 8.70 (dd, 2H, *J* = 5.2 and *J* = 9.0 Hz, H-2b and 6b), 8.56 (d, 2H, *J* = 9.0 Hz, H-3a and 5a), 8.53 (d, 2H, *J* = 8.6 Hz, H-3c and 5c), 7.71 (m, 2H, H-2c and 6c), 7.65 (t, 2H, *J* = 8.7 Hz, H-3b and 5b), 2.53 (s, 3H, CH₃).

2,6-Di-(4-methylphenyl)-4-(4-nitrophenyl)pyrylium tetrafluoroborate (22)

Route I. Starting compounds: 4-nitrobenzaldehyde (500 mg, 3.31 mmol) and 4methylacetophenone (884 μ L, 6.62 mmol) in toluene (2 mL). Refluxing time: 22 h. Crystallization from acetone afforded pure compound **22** (130.3 mg, 10 %) as an intense orange solid.

Route II. Starting compounds: chalcone **7** (270.4 mg, 1.01 mmol) and 4methylacetophenone (404.6 µL, 3.03 mmol) in CH₂Cl₂ (4 mL). Refluxing time: 25 h. Crystallization from 1,2 dichloroethane led to pure compound **22** (52.9 mg, 14 %) as an intense orange solid; m.p. (decomp.) 314-317 °C. IR: 3108, 1615, 1524, 1492, 1455, 1348, 1273, 1190, 1051, 825 cm⁻¹. UV-visible (CH₂Cl₂): 460, 366 and 312 nm. ¹H NMR (500 MHz, acetone- d_6): $\delta = 9.21$ (s, 2H, H-3 and H-5), 8.74 (d, 2H, J = 8.7 Hz, H-2a and 6a), 8.57 (d, 4H, J = 8.2 Hz, H-2b, 6b, 2c and 6c), 8.56 (d, 2H, J = 8.7 Hz, H-3a and 5a), 7.67 (d, 4H, J = 8.2 Hz, H-3b, 5b, 3c and 5c), 2.56 (s, 6H, CH₃); ¹³C NMR (125 MHz, acetone- d_6): $\delta = 172.7$ (C-2 and C-6), 164.7 (C-4), 152.0, 140.1, 131.8 (C-2a and C-6a), 131.8 (C-3b, 5b, 3c and C-5c), 130.0 (C-2b, 6b, 2c and C-6c), 127.5 (C-3a and C-5a), 125.4, 117.0 (C-3 and C-5), 22.0 (CH₃); ¹⁹F NMR (470 MHz, DMSO- d_6): $\delta =$ -148.3072 (¹⁰BF₄⁻), -148.3613 ($J_{F,B11} = 1.1$ Hz,¹¹BF₄⁻). CIHRMS: m/z 383.1526, calcd for C₂₅H₂₁NO₃⁺ + H: 383.1521.

2,6-Di-(4-fluorophenyl)-4-(4-nitrophenyl)pyrylium tetrafluoroborate (23)

Route I. Starting compounds: 4-nitrobenzaldehyde (500 mg, 3.31 mmol) and 4-fluoroacetophenone (804 μ L, 6.62 mmol) in toluene (3 mL). Refluxing time: 20 h. Crystallization from acetone afforded pure compound **23** (67.9 mg, 5 %) as a yellow solid.

Route II. Starting compounds: chalcone **6** (100 mg, 0.37 mmol) and 4-fluoroacetophenone (269.5 μ L, 1.11 mmol) in CH₂Cl₂ (3 mL). Refluxing time: 24 h. Crystallization from 1,2-dichloroethane led to pure compound **23** (4.2 mg, 3 %) as a

yellow solid; m.p. 289-292 °C. IR: 3119, 3080, 1623, 1599, 1494, 1457, 1344, 1239, 1216, 1166, 1057, 1001, 847 and 757 cm⁻¹. UV-visible (CH₂Cl₂): 437, 356 and 297 nm. ¹H NMR (500 MHz, acetone- d_6): δ = 9.30 (s, 2H, H-3 and H-5), 8.79 (dd, 4H, J = 5.2, J = 9.1 Hz, H-2b, 6b, 2c and 6c), 8.77 (d, 2H, J = 9.1 Hz, H-2a and 6a), 8.55 (d, 2H, J = 9.1 Hz, H-3a and 5a), 7.61 (t, 2H, J = 8.8 Hz, H-3b, 5b, 3c and 5c); ¹³C NMR (125 MHz, acetone- d_6): δ = 172.0 (*C*-2 and *C*-6), 169.1, 167.1, 165.4 (*C*-4), 152.1, 139.8, 133.3 (d, J = 10.1 Hz, C-2b, 6b, 2c and 6c), 132.1 (*C*-2a and 6a), 126.7 (d, J = 3.0 Hz, *C*-1b and 1c), 125.5 (*C*-3a and 5a), 118.5, 118.1 (d, J = 75.6 Hz, *C*-3b, 5b, 3c and 6c), 117.7 (*C*-3 and *C*-5). ¹⁹F NMR (470 MHz, DMSO- d_6): δ = -101.49 (m, C-*F*), -148.3084 (¹⁰BF₄⁻), -148.3628 ($J_{F,B11} = 1.1$ Hz,¹¹BF₄⁻). CIHRMS: *m/z* 390.0947, calcd for C₂₃H₁₄NO₃F₂⁺: 390.0942.

4-Biphenyl-2-(4-fluorophenyl)-6-(4-methylphenyl)pyrylium tetrafluoroborate (24)

Starting compounds: chalcone **3** (100 mg, 0.34 mmol) and 4-fluoroacetophenone (124 µL, 1.02 mmol) in CH₂Cl₂ (1 mL). Refluxing time: 22 h. Crystallization from 1,2 dichloroethane afforded pure compound 24 (22.3 mg, 16 %) as a dull ruby-red solid; m.p. (decomp.) 291-293 °C. IR: 2361, 2327, 1622, 1599, 1490, 1463, 1244, 1226, 1164, 1067, 1005, 840, 768 and 728 cm⁻¹. UV-visible (CH₂Cl₂): 435, 292 and 252 nm. ¹H NMR (500 MHz, acetone- d_6): $\delta = 9.19$ (s, 1H, H-3 or H-5), 9.18 (s, 1H, H-5 or H-3), 8.75 (dd, 2H, J = 5.1, J = 9.0 Hz, H-2c and 6c), 8.68 (d, 2H, J = 8.6 Hz, H-2a and 6a), 8.56 (d, 2H, J = 8.4 Hz, H-2b and 6b), 8.10 (d, 2H, J = 8.7 Hz, H-3a and 5a), 7.86 (d, 2H, J = 7.0 Hz, H-2d and 6d), 7.65 (d, 2H, J = 8.0 Hz, H-3b and 5b), 7.62-7.55 (m, 4H, H-3b, 5b, 3d and 5d), 7.51 (m, 1H, H-4d), 2.56 (s, 3H, CH₃).¹³C NMR (125 MHz, acetone- d_6): δ = 172.2 (C-2 or C-6), 170.4 (C-6 or C-2), 166.3 (C-4), 157.4, 148.6, 148.1, 139.6, 138.1, 136.1, 132.8 (d, J = 10.0 Hz, C-2c and 6c), 131.7 (C-2a and 6a), 131.5 (C-3d and 5d), 130.2 (C-3d and 5d), 130.1 (C-4d), 129.9 (C-2b and 6b), 129.2 (C-3a and 5a), 128.2 (C-2d and 6d), 127.6, 118.2 (d, J = 22.8 Hz, C-3c and 5c), 115.5 (C-3 or C-5), 115.4 (C-5 or C-3), 21.9 (CH₃). CIHRMS: m/z 418.1733, calcd for C₃₀H₂₃OF⁺ + H: 418.1733.

4-Biphenyl-2,6-di-(4-fluorophenyl)pyrylium tetrafluoroborate (25)

Starting compounds: biphenyl-4-carboxaldehyde (500 mg, 2.74 mmol) and 4-fluoroacetophenone (667 µL, 5.49 mmol) in toluene (2 mL). Refluxing time: 40 min. After washing with CH₂Cl₂ (5 mL) the obtained precipitate it was pure enough to be characterized as compound **25** (196.7 mg, 74 %), an orange solid; m.p. (decomp.) 307-312 °C. IR: 3051, 1621, 1599, 1491, 1462, 1160, 1065, 1021, 838 and 728 cm⁻¹. UV-visible (MeOH): 414 nm. ¹H NMR (500 MHz, DMSO- d_6): $\delta = 9.19$ (s, 2H, H-3 and H-5), 8.73 (d, 2H, J = 8.7 Hz, H-2a and 6a), 8.70 (dd, 4H, J = 5.3, J = 9.0 Hz, H-2b, 6b, 2c and 6c), 8.12 (d, 2H, J = 8.6 Hz, H-3a and 5a), 7.94 (d, 2H, J = 7.2 Hz, H-2d and 6d), 7.67 (t, 4H, J = 8.8, H-3b, 5b, 3c and 5c), 7.58 (t, 2H, J = 7.2 Hz, H-3d and 5d), 7.51 (t, 1H, J = 7.4 Hz, H-4d); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 168.8$ (*C*-2 and *C*-6), 167.1 (*C*-4), 105.4 (d, J = 105.4 Hz, *C*-4b and 4c), 146.7, 138.0, 132.0 (d, J = 9.8 Hz, *C*-2b, 6b, 2c and 4c), 131.2, 130.9 (*C*-2a and 6a), 129.2 (*C*-3d, 4d and 5d), 127.8 (*C*-3a and

5a), 127.3 (*C*-2d and 6d), 125.9 (d, J = 2.4 Hz, *C*-1b and 1c), 117.2 (d, J = 22.4 Hz, *C*-3b, 5b, 3c and 5c), 114.5 (*C*-3 and *C*-5); ¹⁹F NMR (470 MHz, DMSO-*d*₆): $\delta = -102.38$ (m, C-*F*), -148.3183 (br s, ¹⁰BF₄⁻), -148.3729 ($J_{F,B11} = 1.1$ Hz, ¹¹BF₄⁻), CIHRMS: *m*/*z* 422.1482, calcd for C₂₉H₂₀OF₂⁺ + H: 422.1482.

4-(4-Methoxyphenyl)-2,6-di-(4-methylphenyl)pyrylium tetrafluoroborate (26)⁴⁰

Starting compounds: chalcone **8** (100 mg, 0.40 mmol) and 4-methylacetophenone (144.3 µL, 1.19 mmol) in CH₂Cl₂ (1 mL). Refluxing time: 22 h. Crystallization from 1,2-dichloroethane afforded pure compound **26** (11.4 mg, 8 %) as a yellow-brown solid; ¹H NMR (500 MHz, DMSO- d_6): δ = 8.93 (s, 2H, H-3 and H-5), 8.66 (d, 2H, *J* = 8.9 Hz, H-2a and 6a), 8.43 (d, 4H, *J* = 8.2, H-2b, 6b, 2c and 6c), 7.58 (d, 4H, *J* = 8.1, H-3b, 5b, 3c and 5c), 7.30 (d, 2H, *J* = 9.0 Hz, H-3a and 5a), 3.99 (s, 3H, OCH₃), 2.50 (overlap CH₃); ¹⁹F NMR (470 MHz, DMSO- d_6): δ = -102.27 (m, C-*F*), -148.3157 (br s, ¹⁰BF₄⁻), -148.3700 ($J_{F,B11}$ = 1.1 Hz, ¹¹BF₄⁻).

2,6-Di-(4-fluorophenyl)-4-(4-methoxyphenyl)pyrylium tetrafluoroborate (27)

Route I. Starting compounds: *p*-anisaldehyde (445.2 μ L, 3.67 mmol) and 4-fluoroacetophenone (891 μ L, 7.34 mmol). Refluxing time: 6 h. Crystallization from 1,2-dichloroethane afforded pure compound **27** (260 mg, 19 %) as an intense orange solid;

Route II. Starting compounds: chalcone **9** (100 mg, 0.39 mmol) and 4-fluoroacetophenone (142 µL, 1.17 mmol) in CH₂Cl₂ (1 mL). Refluxing time: 22 h. Crystallization from 1,2-dichloroethane led to pure compound **27** (30.5 mg, 21 %) as an intense orange solid; m.p. 280-283 °C. IR: 3127, 1705, 1631, 1579, 1486, 1236, 1189, 1164, 1049, 1030 and 836 cm⁻¹. UV-visible (CH₂Cl₂): 435, 283 and 243 nm; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.02 (s, 2H, H-3 and H-5), 8.70 (d, 2H, *J* = 9.1 Hz, H-2a and 6a), 8.64 (dd, 4H, *J* = 5.3, *J* = 8.9 Hz, H-2b, 6b, 2c and 6c), 7.64 (t, 2H, *J* = 8.9 Hz, H-3b, 5b, 3c and 5c), 7.33 (d, 2H, *J* = 9.1 Hz, H-3a and 5a), 4.00 (s, 3H, OC*H*₃); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 167.9 (*C*-2 and *C*-6), 166.0 (*C*-4), 165.9 (d, *J* = 255.3 Hz, *C*-4b and 4c), 163.6 (*C*-4a), 133.1 (*C*-2a and *C*-6a), 131.7 (d, *J* = 9.7 Hz, *C*-2b, 6b, 2c and 6c), 126.0 (d, *J* = 2.3 Hz, *C*-1b and 1c), 124.3, 117.1 (d, *J* = 22.4 Hz, *C*-3b, 5b, 3c and 5c), 115.6 (*C*-3a and *C*-5a), 113.0 (*C*-3 and *C*-5), 56.3 (OCH₃); ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -103.00 (m, C-*F*), -148.32 (¹⁰BF₄⁻), -148.37 (*J*_{F,B11} = 1.1 Hz, ¹¹BF₄⁻). CIHRMS: *m/z* 376.1267, calcd for C₂₄H₁₈O₂F₂⁺ + H: 376.1275.

4-[4-(Benzoyloxy[*O*-benzoyl])phenyl]-2,6-(4-methylphenyl)pyrylium tetrafluoroborate (28)

Starting compounds: 4-(benzoyloxy)benzaldehyde (206.1 mg, 0.91 mmol) and 4methylacetophenone (244 μ L, 1.82 mmol) in toluene (2 mL). Refluxing time: 5 h. Treatment with Et₂O (4 mL) at 0 °C and crystallization from acetone led to pure compound **28** (18.1 mg, 4 %) as an orange solid; IR: 1737, 1620, 1594, 1490, 1217, 1169, 1050, 820 and 707 cm⁻¹. UV-visible (MeOH): 429, 368, 287, 231 and 203 nm. ¹H NMR (500 MHz, acetone- d_6): δ = 9.13 (s, 2H, H-3 and H-5), 8.67 (d, 2H, *J* = 8.9 Hz, H- 2a and 6a), 8.55 (d, 4H, J = 8.4 Hz, H-2b, 6b, 2c and 6c), 8.24 (dd, 2H, J = 1.3, J = 8.3 Hz, H-2d and 6d), 7.79 (tt, 1H, J = 1.3, J = 7.5 Hz, H-4d), 7.76 (d, 2H, J = 8.9 Hz, H-3a and 5a), 7.67-7.64 (m, 6H, H-3b, 5b, 3c, 5c, 3d and 5d), 2.56 (s, 6H, CH₃); ¹H NMR (500 MHz, DMSO- d_6): $\delta = 9.09$ (s, 2H, H-3 and H-5), 8.72 (d, 2H, J = 8.6 Hz, H-2a and 6a), 8.49 (d, 4H, J = 8.1 Hz, H-2b, 6b, 2c and 6c), 8.21 (d, 2H, J = 7.5 Hz, H-2d and 6d), 7.81 (t, 1H, J = 7.1 Hz, H-4d), 7.77 (d, 2H, J = 8.6 Hz, H-3a and 5a), 7.67 (t, 2H, J = 7.7 Hz, H-3d and 5d), 7.61 (d, 4H, J = 8.1 Hz, H-3b, 5b, 3c and 5c), 2.51 (overlap CH₃); ¹³C NMR (125 MHz, acetone- d_6): $\delta = 171.9$ (C-2 and C-6), 165.8 (OCOPh), 165.1 (C-4), 157.6, 148.0, 135.2 (C-4d), 132.4 (C-2a and 6a), 131.7 (C-3b, 5b, 3c and C-5c), 131.0 (C-2d and 6d), 130.0, 129.9 (C-3d and 5d), 129.8 (C-2b, 6b, 2c and C-6c), 127.7, 124.6 (C-3a and 5a), 115.5 (C-3 and C-5), 21.9 (CH₃); CIHRMS: m/z 458.1878, calcd for C₃₂H₂₆O₃⁺ + H: 458.1882.

Compound	$\sigma_{p}(A)$	$\sigma_{p}(B)$	$\sigma_p(C)$	Σσ
10	0	0	0	0
11	0	-0.17	-0.17	-0.34
12	-0.01	0	0	-0.01
13	-0.01	-0.17	-0.17	-0.35
14	0	0.06	0	0.06
15	0.06	0	0	0.06
16	0.06	0.06	0	0.12
17	0	0.06	0.06	0.12
18	0.06	0.06	0.06	0.18
19	0.78	0	0	0.78
22	0.78	-0.17	-0.17	0.44
23	0.78	0.06	0.06	0.90
25	-0.01	0.06	0.06	0.11
26	-0.27	-0.17	-0.17	-0.61
27	-0.27	0.06	0.06	-0.15

4. Table S1. Hammett substituent constants⁴⁴ for the pyrylium salts used in this work

5. Table S2. UV-vis absorption and fluorescence data of some pyrylium tetrafluoroborate.

Compound	λ abs. (nm) (CH ₂ Cl ₂)	λ abs. (nm) (Acetone)	λ ems. (nm) (Acetone)	$t_{1/2}(\min)$
10	420, 360 and 290	408, 357	465	-
13	-	417	533	-
14	322, 254ª 409, 357 ^b	409, 356	468	-
15	-	406, 359	464	214.2
22	460, 366 and 312	439	518	166.3
23	437, 356 and 297	424	498	-
26	-	421	490	272.2
27	435, 283 and 243	417	518	-
28	429, 368, 287, 231 and 203 ^a	430, 368	492	-

^aUV-vis absorption spectrum was achieved in MeOH; ^bUV-vis absorption spectrum in MeOH in acidic medium.

6. Figure S1. Tetrafluoroborate anion chemical shift in ¹⁹F NMR for different pyrylium salts^a in DMSO- d_6 at a constant concentration of 20 mM for coupling with ¹⁰B vs molecular weight of the pyrylium cation.

^aIn this graphic, triangles correspond to compound of series (a); circles to series (b); hexagons for series (c); squares to series (d).

7. Figure S2. Tetrafluoroborate anion chemical shift in ¹⁹F NMR for different pyrylium salts in DMSO- d_6 at a constant concentration of 20 mM for coupling with ¹⁰B vs Hammett constants for the substituents ($\Sigma \sigma_p$).

Figure S3. UV-vis absorption spectra and titration of pyrylium tetrafluoroborate 14 in methanol: (a) UV-vis absorption spectrum of 14 in methanol; (b) UV-vis spectra (0.2 – 4.0 equiv of TFAA); (c) UV-vis spectra (0.2 – 4.0 equiv of HClO₄); (d) UV-vis spectra (0.2 – 4.0 equiv of AcOH).

9. Figure S4. UV-vis absorption spectra of pyrylium tetrafluoroborate **10**: (a) in CH₂Cl₂; (b) variation in the UV-vis Absorption spectrum in DMSO with the time.

10. Figure S5. ¹H NMR spectra of compound **10** in DMSO- d_6 (a) and after a 10 cycles of UV radiation (b).

11. Figure S6. Fluorescence spectra of pyrylium tetrafluoroborates: (a) Compound 13, (b) 14 and (c) 15 in acetone; (d) Variation in the emission wavelength of compound 22 in acetone with the time.

12. Cartesian coordinates for some pyrylium complexes.

Compound 10:

Atom	Z	x	У	Z
С	6.0	-1.1889626107	-0.8718606371	-0.2907587768
С	6.0	-0.0107115967	-1.1667080920	0.3665901543
0	8.0	0.7767646612	-0.1576479243	0.7744946232
С	6.0	0.5748177346	1.1151906576	0.3996348288
С	6.0	-0.6037605685	1.4493177293	-0.2409454956
С	6.0	-1.5360004782	0.4587434269	-0.5943478126
С	6.0	-2.8245737024	0.7992207926	-1.2450987998
С	6.0	0.4639138721	-2.4931133825	0.7544395100
С	6.0	1.6300341873	2.0403071447	0.8053858476
C	6.0	-3.2078818225	2.1399711159	-1.4471179499
Ċ	6.0	-4,4127877060	2,4615661968	-2.0653154398
Č	6.0	-5 2759453689	1 4507955753	-2 4919496134
Č	6.0	-4.9195282551	0.1156258372	-2.2943463648
Č	6.0	-3.7123919072	-0.2046248182	-1.6793343882
Č	6.0	2.5721695097	1.6756085897	1.7806130106
Č	6.0	3 5829876915	2 5606708395	2 1416813518
č	6.0	3 6729003085	3 8137549156	1 5308672539
Č	6.0	2 7506193202	4 1755460399	0 5453594995
č	6.0	1 7371105563	3 2963614211	0 1815977417
Ċ	6.0	1 5120088752	-2 6351280212	1 6793980685
č	6.0	1 9513448752	-3 9027014555	2.0472779213
C	6.0	1 3742402334	-5 0413918610	1 4805545056
C	6.0	0 3536392579	-4 9064488543	0 5350409446
C	6.0	-0 1041418763	-3 6436127801	0 1779745721
н	1.0	-1 8412957812	-1 6929231407	-0 5437282562
н	1.0	-0 7722131473	2 4901223178	-0 4694675494
н	1.0	-2 5681233797	2 9527828820	-1 1236563024
н	1.0	-4 6783499773	3 5049819607	-2 2096578593
н	1.0	-6 2160194157	1 7013564275	-2 9754366555
н	1.0	-5 5830223113	-0.6812742271	-2 6173671029
Н	1.0	-3 4629353049	-1 2525659933	-1 5591427663
Н	1.0	2 5197105549	0.6968618551	2 2401711527
Н	1.0	4 3009368292	2 2727469744	2 9033994089
Н	1.0	4 4695190780	4 4981170529	1 8089188237
Н	1.0	2 8441594547	5 1298092258	0.0337644108
н	1.0	1.0702095256	3 5631239484	-0.6316620536
н	1.0	1 9870116584	-1 7550593501	2 0921083609
н	1.0	2 7572972869	-4 0017133706	2 7684064224
н	1.0	1 7313052705	-6 0291014758	1 7583696000
н	1.0	-0.0731328869	-5 7868590575	0.0625178036
н	1.0	-0.8588918783	-3 5552593643	-0 5959812704
B	5.0	2 6582882378	-0 5903309964	-1 5516693198
F	9.0	3 6444380801	-0 6921484709	-2 5141252744
F	9.0	1 9615249828	0.6508061939	-1 6813031144
F	9.0	1 6992051687	-1 6283995053	-1 6903263674
F	9.0	3 2086127649	-0.6572163426	-0 2511272835
*	2.0	2.200012/049	5.0572105420	5.2511212055

Compound 13:

Atom	Ζ	x	У	Z
С	6.0	-0.7553539930	0.5396826666	-0.7452050349
С	6.0	-1.9643831687	0.1686746000	-0.2094894753
0	8.0	-2.0116787162	-0.4162672324	0.9973498297
С	6.0	-0.8929910388	-0.7800943397	1.6507961306
С	6.0	0.3325258978	-0.4220943178	1.1563186988
С	6.0	0.4365063826	0.2753704722	-0.0599175235
С	6.0	1.7296044073	0.7017529927	-0.5866345486
С	6.0	-3.2645007715	0.3999268455	-0.8088346673
С	6.0	-1.1360796046	-1.4947746530	2.8920806394
С	6.0	2.9255452966	0.4185788262	0.0932985034
С	6.0	4.1459091475	0.8486780703	-0.3933063280
С	6.0	4.2457667558	1.5770635953	-1.5935504689
С	6.0	3.0426681937	1.8694575661	-2.2630723881
С	6.0	1.8215581517	1.4403257330	-1.7782800111
С	6.0	-2.3398539425	-2.1867874937	3.0899856584
С	6.0	-2.5742439173	-2.8342233745	4.2968730720

С	6.0 -1.6176182806 -2.8292961296 5.3212461817
С	6.0 -0.4052135903 -2.1573469936 5.1019080895
С	6.0 -0.1661551800 -1.4940345267 3.9090219437
С	6.0 -4.3545319795 -0.4169174624 -0.4747055725
С	6.0 -5.6043208469 -0.1535908555 -1.0212726904
С	6.0 -5.7939516901 0.9045934167 -1.9210944756
С	6.0 -4.6876511416 1.6932762363 -2.2741768938
С	6.0 -3.4390623837 1.4501017486 -1.7249684588
С	6.0 -1.8826034002 -3.5022696947 6.6424200324
С	6.0 5.5542488298 2.0233082847 -2.1220388123
С	6.0 5.6431042841 2.7663585074 -3.3130350390
С	6.0 6.8695451947 3.2055572080 -3.7997560539
С	6.0 8.0473220770 2.9045039857 -3.1141720078
С	6.0 7.9772585078 2.1923361959 -1.9156466584
С	6.0 6.7505774240 1.7439894949 -1.4373565610
С	6.0 -7.1503087039 1.2054945104 -2.5034733373
В	5.0 -1.1587172789 -2.8552931244 -1.2126486029
F	9.0 -1.1605586370 -4.0903306761 -1.8281914031
F	9.0 -2.1169555373 -2.8285907513 -0.1475375640
F	9.0 0.1122732621 -2.5668674773 -0.6650753096
F	9.0 -1.5057371594 -1.8322149953 -2.1277313044
Н	1.0 -0.7596276403 0.9546401413 -1.7393065033
Н	1.0 1.2079466234 -0.7597793129 1.6874279330
Н	1.0 2.9159623097 -0.1477657723 1.0167023260
Н	1.0 5.0315198831 0.5925693189 0.1746952127
Н	1.0 3.0467202537 2.4323876610 -3.1879566418
Н	1.0 0.9314611361 1.6947311000 -2.3407056218
Н	1.0 -3.0571025682 -2.2439599333 2.2801574959
Н	1.0 -3.5116863746 -3.3657052683 4.4400075301
Н	1.0 0.3537849423 -2.1458510353 5.8801952324
Н	1.0 0.7658851932 -0.9526322273 3.7755277450
Н	1.0 -4.1916087701 -1.2727921364 0.1690342461
Н	1.0 -6.4465673850 -0.7855241442 -0.7532311431
Н	1.0 -4.8127033455 2.5100841032 -2.9805004352
Н	1.0 -2.6022247752 2.0916919679 -1.9839706684
Н	1.0 -2.7338915465 -4.1861244219 6.5799219988
Н	1.0 -1.0090541799 -4.0713035685 6.9803823184
Н	1.0 -2.1043452410 -2.7565305660 7.4173199397
Н	1.0 4.7504516085 2.9975743568 -3.8830681079
Н	1.0 6.9022816185 3.7583170665 -4.7343576293
Н	1.0 9.0054293177 3.2442706757 -3.4947276425
Н	1.0 8.8814923120 1.9563260151 -1.3618618006
Н	1.0 6.7294768798 1.2103770360 -0.4939175372
Н	1.0 -7.5306215181 2.1661639285 -2.1313242422
Н	1.0 -7.1000759274 1.2791716081 -3.5960713142
Н	1.0 -7.8788806566 0.4318905488 -2.2454912795

Compound 14:

Atom	Ζ	x	У	Z
С	6.0	-1.2537223740	0.9500953971	0.2364024654
С	6.0	-1.2583000745	-0.4183642254	0.3665131134
0	8.0	-0.0977412416	-1.0804081066	0.4938316812
С	6.0	1.0970793221	-0.4784541560	0.3851784156
С	6.0	1.1397042774	0.9000358585	0.2883284175
С	6.0	-0.0380619436	1.6598191606	0.2026335997
С	6.0	-0.0086223455	3.1335169706	0.0874800687
С	6.0	-2.4328453794	-1.2845905309	0.4184726807
С	6.0	2.2356524149	-1.3875565301	0.4701355883
С	6.0	1.1979281115	3.8273642265	-0.1292162449
С	6.0	1.2243326067	5.2157010910	-0.2168794836
С	6.0	0.0433013871	5.9501271325	-0.0969740280
С	6.0	-1.1661265088	5.2813657845	0.0956541626
С	6.0	-1.1905737865	3.8934732334	0.1865750531
С	6.0	2.0415306824	-2.7531322519	0.7449285084
С	6.0	3.1303932118	-3.6133406508	0.8321478103
С	6.0	4.4258127690	-3.1283549044	0.6396543368
С	6.0	4.6277795013	-1.7784419464	0.3424359470
С	6.0	3.5428556182	-0.9148506901	0.2542483265
С	6.0	-2.3320160784	-2.6304849210	0.0186392261
С	6.0	-3.4341764169	-3.4717594078	0.1226563590
С	6.0	-4.6299816707	-2.9578059581	0.6195106561
С	6.0	-4.7678090542	-1.6231117549	0.9942452190
С	6.0	-3.6609640240	-0.7902854949	0.8917956634

F	9.0 -5.6986664737 -3.7670238904 0.7131133192
Н	1.0 -2.2025440725 1.4439820490 0.0792019264
Н	1.0 2.1095332334 1.3698204534 0.2528037943
Н	1.0 2.1309446894 3.2859323093 -0.2508898920
Н	1.0 2.1712854864 5.7233670225 -0.3755753801
Н	1.0 0.0633855790 7.0344157562 -0.1680374995
Н	1.0 -2.0952140644 5.8386729820 0.1760155519
Н	1.0 -2.1442260839 3.4084878350 0.3665870120
Н	1.0 1.0360260851 -3.1373744671 0.8706506757
Н	1.0 2.9677750372 -4.6658154097 1.0457732940
Н	1.0 5.2770933473 -3.7995880615 0.7230505724
Н	1.0 5.6311911587 -1.3984488245 0.1761914239
Н	1.0 3.7126615315 0.1149831673 -0.0391425601
Н	1.0 -1.4059762003 -2.9779258466 -0.4300188956
Н	1.0 -3.3857320432 -4.5107058308 -0.1885010304
Н	1.0 -5.7235168143 -1.2601621438 1.3565310624
Н	1.0 -3.7440617721 0.2404803631 1.2279649253
В	5.0 0.5704095810 -0.9907317715 -2.6823281422
F	9.0 1.7937999812 -0.3795282712 -2.3134212831
F	9.0 -0.4840876943 -0.1235228723 -2.2856203161
F	9.0 0.5233316702 -1.2342902899 -4.0385403752
F	9.0 0.4273928340 -2.1961245842 -1.9375667250

Compound 27:

Atom	Ζ	x	У	Z
С	6.0	-1.1597878159	0.2236609431	0.3129293239
Č	6.0	-1 1591058749	-1 1349399234	0 4657997757
õ	8.0	0.0073338533	-1 8006260464	0 5902650139
č	6.0	1 1939330301	-1 1798697907	0 4029290445
C	6.0	1 2326795705	0 1874127250	0 2439921991
C	6.0	0.0530274898	0.9495134663	0.2357313455
c	6.0	0.0657494331	2 4134761647	0.1428732824
C	6.0	-2 3325644327	-2 00/2775359	0.5603538276
c	6.0	2 3341884199	-2 0899404493	0.3808793167
c	6.0	1 2639520777	3 1362515670	-0.0643116848
c	6.0	1 2768955258	4 5171946690	-0 1234831873
C	6.0	0.0825063964	5 2450006921	0.0227136984
C	6.0	1 1207602012	1 5547732048	0.0227150704
C	6.0	1 1140352007	3 1663/77037	0.2323515120
C	6.0	2 1687060830	3 1200000831	0.0156015401
C	6.0	2.108/900830	1 3001077668	0.0081860471
C	6.0	<i>A A</i> 071123275	3 8272545046	0.372/833511
C	6.0	4.49/11232/5	2 4002506402	0.3724833311
C	6.0	4.7030302030	1 6320503345	0.7301473490
C	6.0	2 2457184272	3 35/72/6032	0.7525855089
C	6.0	2 2507852021	-3.3347240932	0.1703073133
C	6.0	-5.5507852921	-4.1929100155	0.2/33/032/9
C	6.0	-4.34938/10/2	-3.00030300013	0.7488300708
C	6.0	-4.0/332/2949	-2.5516592065	1.124493/299
E	0.0	-5.3014140404	-1.303/8/4430	1.0304030383
Г Г	9.0	-5.0181205570	-4.4/45529100	0.8554998955
F O	9.0	5.5455450120	-4.0/14495012	0.37795(0002
C	0.0	0.1908399297	0.3908329738	-0.03/8300003
C D	0.0 5.0	-0.993/34983/	/.3820303/9/	0.0009102184
D E	5.0	0.7226759116	-0.9/42326699	-2.7800022047
Г Г	9.0	2.0419330300	-0./33203482/	-2.3439119104
Г Г	9.0	-0.0859226524	0.1555458940	-2.5520054808
Г Г	9.0	0./02/503625	-1.3159546976	-4.12/323403/
F	9.0	0.1981252905	-2.06//424809	-2.0105/43931
Н	1.0	-2.1139/843/5	0./09443/240	0.160/866901
Н	1.0	2.1966421886	0.6342564271	0.05/2032295
H	1.0	2.2009659364	2.6148640241	-0.220/444658
H	1.0	2.1984669498	5.065348965/	-0.28/2461190
H	1.0	-2.0564/6124/	5.0849452858	0.362290/948
H	1.0	-2.0616482224	2.6/1/318123	0.4729693407
H	1.0	1.2001941811	-3.7610510082	-0.3654943707
H	1.0	3.1379774265	-5.3401614843	-0.3161355725
Н	1.0	5.6967659017	-2.1673708258	1.0165846031
H	1.0	3.7621992287	-0.6044657616	1.0510902332
Н	1.0	-1.3161353563	-3.7260910795	-0.2422904857
Н	1.0	-3.3026274019	-5.2335768387	-0.0261800010
Н	1.0	-5.6292764523	-1.9663990834	1.4901029542
Н	1.0	-3.6438855766	-0.4715901286	1.3502442889
Н	1.0	-0.6693241652	8.4160934228	-0.1137421427

Н	1.0 -1.6691354556	7.1126884840	-0.8224051442
Н	1.0 -1.5161348535	7.2639788802	0.9580447985

Compound 28:

Atom	Ζ	x	У	Ζ
С	6.0	0.5136189770	-0.4187239633	0.7084335434
C	6.0	0.4260520387	-1.7599754765	1.0051793469
0	8.0	-0.1827582733	-2.5895830174	0.1402101901
C	6.0 6.0	-0.5222560340	-2.19/195/506	-1.1029180663
C	6.0	0.0326162851	0.0823526824	-0 5145426443
č	6.0	0.0564853180	1.5183215808	-0.8225571317
С	6.0	0.9172351722	-2.4212522229	2.2075369919
С	6.0	-0.9581618626	-3.2906674178	-1.9642604761
С	6.0	-0.3606778228	2.0190262334	-2.0745962343
C	6.0	-0.3951278599	3.3787218896	-2.3405956089
C	6.0	0.0035/64865	4.2881055160	-1.353365315/
C	6.0	0.4479938729	2,4599519703	0 1415135202
č	6.0	-1.8167180956	-3.0601423705	-3.0538315210
C	6.0	-2.2357189724	-4.1161100233	-3.8513625629
С	6.0	-1.8287783879	-5.4334236342	-3.5838321357
С	6.0	-0.9518982770	-5.6498183864	-2.5123751560
C	6.0	-0.5098973185	-4.5983944754	-1.7172620612
C	6.0	1.1830628214	-3.800/2963/5	2.1865191850
C	6.0	1.0440323211	-3 7390181388	4 5214778348
č	6.0	1.6203357268	-2.3559237676	4.5275174523
Č	6.0	1.1475813594	-1.7049420237	3.3954977512
С	6.0	2.3320825140	-4.4440292075	5.7700686431
С	6.0	-2.3287149913	-6.5756432722	-4.4331917096
0	8.0	-0.0785841955	5.6166578084	-1.6666770225
C	6.0	0.246/38/43/	6.5/1/410/91	-0.6854313314
C	6.0	-2.8219438502	6 6404201121	2.12/3//0249
c	6.0	-2.1238534981	6.3131223261	0.1620996125
Č	6.0	-0.8469625316	6.8869372230	0.2645658796
С	6.0	-0.5648005715	7.7873074838	1.3051577694
С	6.0	-1.5509138777	8.1109641132	2.2313113678
0	8.0	1.3342041381	7.0854989899	-0.6975822584
H	1.0	1.0625848541	0.206219140/	1.394/426496
п Н	1.0	-0.6617281549	-0.3880492274	-2.4430902130
Н	1.0	-0.7198846070	3.7539837296	-3.3055528605
Н	1.0	0.7817172603	4.5165021645	0.6527944362
Н	1.0	0.7976080136	2.1372921071	1.1203169098
Н	1.0	-2.1793047568	-2.0573661967	-3.2617554638
Н	1.0	-2.9043218033	-3.9210978296	-4.6863817305
H U	1.0	-0.596/900512	-0.030/92330/	-2.3062052856
Н	1.0	1 0758103855	-4 3474524522	1 2587038972
Н	1.0	1.8492782569	-5.5097112020	3.2924834475
Н	1.0	1.7996315415	-1.7847891626	5.4352207609
Н	1.0	0.9530328438	-0.6375030644	3.4391137065
Н	1.0	2.7108518320	-5.4460695969	5.5468259914
H	1.0	3.1275120238	-3.8822238559	6.2718897698
H U	1.0	1.5094819331	-4.5540869//6	6.4905262558
H H	1.0	-1.9612924710	-7 5390177847	-4.0671482442
Н	1.0	-3.4254462836	-6.6102163275	-4.4373542246
В	5.0	3.0126270713	-1.8619883346	-1.0552775388
Н	1.0	-3.5893866430	7.7837306812	2.8564256664
Н	1.0	-4.0928884961	6.1907940305	1.0186783054
H	1.0	-2.3444082578	5.6234679887	-0.6452866025
H U	1.0	0.4280583402	8.2214259480	1.3632559268
F	1.0 9.0	4 2500449442	-2 2249191896	-1 5460467094
F	9.0	2.3330419786	-1.0131552017	-1.9578854435
F	9.0	2.2025114422	-3.0284809832	-0.8488882275
F	9.0	3.1317591112	-1.1985855821	0.1882470389

13. Figure S7. Tetrafluoroborate anion chemical shift in ¹⁹F NMR for different pyrylium salts vs. theoretical Binding Energies calculated at M06-2X/6-31G (d) level of theory.

14. ¹H and ¹³C NMR spectra of new pyrylium compounds:

Fig. S8. Compound 13: ¹H NMR spectrum (DMSO-*d*₆ 500 MHz)

Fig. S10. Compound 14: ¹H NMR spectrum (DMSO-*d*₆ 500 MHz)

Fig. S11. Compound 14: ¹H NMR spectrum (acetone-*d*₆ 300 MHz)

Fig. S12. Compound 14: ¹³C NMR spectrum (DMSO-*d*₆125 MHz)

Fig. S13. Compound 16: ¹H NMR spectrum (DMSO-*d*₆ 500 MHz)

Fig. S14. Compound 16: ¹³C NMR spectrum (DMSO-*d*₆125 MHz)

Fig. S15. Compound 19*/19a: ¹H NMR spectrum (DMSO-*d*₆ 300 MHz)

ppm

Fig. S18. Compound **22**: ¹H NMR spectrum (acetone-*d*₆ 500 MHz)

Fig. S19. Compound 22: 13 C NMR spectrum (acetone- d_6 125 MHz)

Fig. S20. Compound 22/22a: ¹H NMR spectrum (DMSO-*d*₆ 500 MHz)

2.00

4.36

Fig. S22. Compound 23: ¹³C NMR spectrum (acetone- d_6 125 MHz)

Fig. S23. Compound 23*/23a: ¹H NMR spectrum (DMSO-*d*₆ 300 MHz)

Fig. S24. Compound **24**: ¹H NMR spectrum (acetone-*d*₆ 500 MHz)

Fig. S25. Compound 24: ¹³C NMR spectrum (acetone-*d*₆ 125 MHz)

Fig. S26. Compound 25: ¹H NMR spectrum (DMSO-*d*₆ 500 MHz)

Fig. S27. Compound 25: ¹³C NMR spectrum (DMSO-*d*₆125 MHz)

Fig. S28. Compound 27: ¹H NMR spectrum (DMSO-*d*₆ 500 MHz)

Fig. S30. Compound 28: ¹H NMR spectrum (acetone-*d*₆ 500 MHz)

Fig. S31. Compound 28: ¹³C NMR spectrum (acetone-*d*₆ 125 MHz)

15. ¹⁹F NMR spectra of pyrylium salts:

Fig. S32. Compound 10: ¹⁹F NMR spectrum (470 MHz)

Fig. S34. Compound 12: ¹⁹F NMR spectrum (470 MHz)

Fig. S35. Compound 13: ¹⁹F NMR spectrum (470 MHz)

Fig. S37. Compound 15: ¹⁹F NMR spectrum (470 MHz)

Fig. S38. Compound 16: ¹⁹F NMR spectrum (470 MHz)

Fig. S39. Compound 17: ¹⁹F NMR spectrum (470 MHz)

Fig. S40. Compound 18: ¹⁹F NMR spectrum (470 MHz)

Fig. S41. Compound 19: ¹⁹F NMR spectrum (470 MHz)

Fig. S42. Compound 22: ¹⁹F NMR spectrum (470 MHz)

Fig. S44. Compound 25: ¹⁹F NMR spectrum (470 MHz)

Fig. S45. Compound 26: ¹⁹F NMR spectrum (470 MHz)

