Supporting Information

Revealing the structure–property relationships of covalent organic frameworks for CO₂ capture from postcombustion gas: a multi-scale computational study

Minman Tong, Qingyuan Yang*, Yuanlong Xiao and Chongli Zhong*

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

*To whom correspondence should be addressed. <u>zhongcl@mail.buct.edu.cn</u>, <u>qyyang@mail.buct.edu.cn</u>.

Contents

- 1. Physicochemical properties of the 46 COFs studied in this work
- 2. Force fields for the COFs
- 3. Model clusters and atomic partial charges for the COFs
- 4. Separation properties of the top 4 COFs

1. Physicochemical properties of the 46 COFs Studied in This Work

COF ID	Names	Dimensions <i>a</i>	Unit cells ^a (Å)	Pore sizes ^a (Å)	V_{free}^{b} (cm ³ /g)	$arphi^b$	S_{acc}^{b} (m ² /g)	$\Delta Q_{ m st}^{0\ c}$ (kJ/mol)
1	COF-1 ¹	2D	a = b = 15.6529, c = 6.7005	7.0	0.55	0.52	221	10.4
2	COF-5 ¹	2D	a = b = 29.7010, c = 3.46020	27.0	1.24	0.72	1697	7.6
3	COF-6 ²	2D	a = b = 15.0911, c = 3.59880	8.6	0.55	0.53	1123	7.1
4	COF-8 ²	2D	a = b = 22.7331, c = 3.47640	16.4	0.93	0.65	1551	6.3
5	COF-10 ²	2D	a = b = 37.8099, c = 3.47630	31.7	1.74	0.78	1919	6.5
6	COF-11Å ³	2D	a = b = 20.8120, c = 3.38500	11.0	0.35	0.40	299	5.0
7	COF-14Å ³	2D	a = b = 20.8120, c = 3.38500	14.0	0.34	0.48	520	6.3
8	COF-16Å ³	2D	a = b = 20.8120, c = 3.38500	16.0	0.61	0.57	1359	10.0
9	COF-18Å ³	2D	a = b = 20.8120, c = 3.38500	18.0	0.77	0.63	1478	7.4
10	PPy-COF ⁴	2D	a = b = 22.1629, c = 3.42066	17.3	0.65	0.57	1214	5.4
11	TP-COF ⁵	2D	a = b = 37.5412, c = 3.37840	32.6	1.42	0.75	1724	8.0
12	COF-42 ⁶	2D	a = b = 29.9768, c = 4.05000	28.0	1.28	0.72	2575	9.0
13	COF-43 ⁶	2D	a = b = 45.8877, c = 3.97840	35.0	2.34	0.81	2551	21.6
14	CTF-1 ⁷	2D	a = b = 14.5740, c = 3.40400	12.0	0.48	0.49	919	5.3
15	CTF-2-AA ⁸	2D	a = b = 18.3600, c = 3.36000	18.0	0.60	0.54	1185	5.0
16	CTF-2-AB ⁸	2D	a = b = 18.3600, c = 6.72000	18.0	0.60	0.54	443	13.3
17	BLP-2H ⁹	2D	a = b = 15.2905, c = 3.45790	6.4	0.56	0.50	1077	5.2
18	ZnPc-Py COF ¹⁰	2D	a = b = 26.9800, c = 3.33800	27.0	0.85	0.66	1334	10.7

Table S1. Physicochemical properties of the 46 COFs studied in this work

19	2D-NiPc-BTDA COF ¹¹	2D	a = b = 46.4916, c = 3.40493	19.0	0.69	0.62	1243	8.3
20	TpPa-1 ¹²	2D	a = b = 22.5560, c = 3.40000	18.3	0.92	0.65	1600	25.8
21	TpPa-2 ¹²	2D	a = b = 22.5060, c = 3.50000	15.0	0.77	0.60	1521	9.2
22	TpBD ¹³	2D	a = b = 29.2871, c = 3.25000	23.1	1.18	0.70	1657	24.4
23	TpPa-F4 ¹⁴	2D	a = b = 22.1200, c = 3.28000	17.0	0.58	0.59	1072	7.6
24	TPBD-ME2 ¹⁴	2D	a = b = 29.2800, c = 3.2500	23.0	1.02	0.66	1494	6.2
25	$TpBD-(NO_2)_2^{14}$	2D	a = b = 31.5400, c = 3.4900	22.0	1.12	0.70	1624	9.8
26	DAAQ-TFP COF ¹⁵	2D	a = b = 29.8330, c = 3.62140	23.0	1.19	0.73	1687	23.9
27	COF-366 ¹⁶	2D	a = b = 25.4170, c = 12.3770	20.0	2.23	0.81	4035	17.5
28	COF-66 ¹⁶	2D	a = b = 28.9840, c = 3.81300	23.0	1.24	0.72	1700	6.1
29	ILCOF-1 ¹⁷	2D	a = 34.7756, b = 34.1644, c = 6.57870	23.2	2.54	0.82	3765	25.2
30	TT-COF ¹⁸	2D	a = b = 32.8400, c = 3.45000	30.0	1.30	0.75	1622	8.6
31	Star-COF-1 ¹⁹	2D	a = b = 38.5200, c = 3.38000	39.0	1.22	0.71	1334	4.3
32	Star-COF-2 ¹⁹	2D	a = b = 46.3300, c = 3.42000	46.0	1.51	0.75	1458	5.6
33	Star-COF-3 ¹⁹	2D	a = b = 46.8300, c = 3.41000	47.0	1.71	0.77	1545	4.2
34	Pc-PBBA COF ²⁰	2D	a = b = 22.8500, c = 3.34000	21.2	0.81	0.64	1328	6.0
35	COF-LZU1 ²¹	2D	a = b = 22.0400, c = 3.72900	18.0	1.21	0.69	2130	4.6
36	COF-102 ²²	3D	a = b = c = 27.1771	8.9	1.86	0.78	5005	4.9
37	COF-103 ²²	3D	a = b = c = 28.2477	9.6	2.05	0.80	5204	4.6
38	COF-105 ²²	3D	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	18.3	5.17	0.91	6637	4.1
39	COF-108 ²²	3D	a = b = c = 28.4010	15.2/29.6	5.37	0.92	6409	5.1

40	COF-202 ²³	3D	a = b = c = 30.1051	11.0	1.37	0.72	4151	7.6
41	NPN-1 ²⁴	3D	a = b = 13.1545, c = 7.98180	7.3×3.3	0.48	0.50	605	11.2
42	NPN-2 ²⁴	3D	a = b = 13.4210, c = 8.52800	7.8×3.4	0.54	0.53	918	10.5
43	NPN-3 ²⁴	3D	a = b = 15.7703, c = 7.07170	5.2×5.2	0.46	0.48	877	8.1
44	COF-300 ²⁵	3D	a = b = 28.1270, c = 8.87900	7.8	1.31	72	3094	13.0
45	CTC-COF ²⁶	3D	a = b = 25.0645, c = 4.29890	22.0	0.89	64	1450	6.4
46	COF-320 ²⁷	3D	a = 27.9300, b = 31.3100, c = 7.89000	11.5	0.87	61	1659	4.6

^{*a*} Obtained from the experimental data.

^b Calculated with the Materials Studio package.

^c Obtained from molecular simulations.

The accessible surface area (S_{acc}) and the total free volume (V_{free}) of each COF material were estimated using the "Atoms Volume & Surfaces" calculation within the Materials Studio package.²⁸ The porosity was obtained from the ratio of free volume V_{free} to the total volume per unit cell. The accessible surface area (S_{acc}) was calculated by a probe molecule with diameter equal to the kinetic diameter of N₂ (0.368 nm), while a probe size of 0.0 nm was applied to determine the absolute amount of volume not occupied by the framework atoms.

2. Force field parameters for the COFs

Table S2. Lennard-Jones parameters for the framework atoms of the COFs

Atoms	С	0	Н	N	F	В	Si	S	Zn	Ni ^a
σ (Å)	3.47	3.03	2.85	3.26	3.09	3.58	3.80	3.59	4.04	2.52
$\mathcal{E}/k_B(\mathbf{K})$	47.86	48.16	7.650	38.95	36.48	47.81	156.0	173.1	27.68	7.549

^a Taken from the UFF force field²⁹ (they are missing in the Dreiding force field).

3. Model clusters and atomic partial charges for the COFs

Fig. S1. Model cluster used for calculating the partial charges for each atom of COF-1. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S3. Atomic	partial charges	for the COF-1	structure derived	on DFT/B3LYP Level.

Atomic types	B1	01	C1	C2	H2
Charge (e)	0.700	-0.587	-0.157	-0.084	0.106

Fig. S2. Model cluster used for calculating the partial charges for each atom of COF-5. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S4. Atomic partial charges for the COF-5 structure derived on DFT/B3LYP Level.

Atomic types	B1	01	C1	C2	C3	C4	C5	H1	H2
Charge (e)	0.660	-0.401	0.219	-0.179	-0.158	0.057	-0.086	0.106	0.073

Fig. S3. Model cluster used for calculating the partial charges for each atom of COF-6. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

	1	e							
Atomic types	B 1	01	C1	C2	C3	C4	C5	H1	H2
Charge (e)	0.547	-0.396	-0.127	0.265	-0.343	0.044	-0.045	0.192	0.101

Table S5. Atomic partial charges for the COF-6 structure derived on DFT/B3LYP Level.

Fig. S4. Model cluster used for calculating the partial charges for each atom of COF-8. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	B1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	0.681	-0.422	-0.189	0.226	-0.181	0.034	-0.105	-0.164	-0.089
Atomic types	C8	С9	H1	H2	H3	H4			

Table S6. Atomic partial charges for the COF-8 structure derived on DFT/B3LYP Level.

Fig. S5. Model cluster used for calculating the partial charges for each atom of COF-10. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	B1	01	C1	C2	С3	C4	C5	C6	C7
Charge (e)	0.696	-0.410	0.220	-0.139	0.040	-0.185	-0.140	-0.140	0.040
Atomic types	H2	Н5	H6						
Charge (e)	0.108	0.103	0.093						

 Table S7. Atomic partial charges for the COF-10 structure derived on DFT/B3LYP Level.

COF-11Å

Fig. S6. Model cluster used for calculating the partial charges for each atom of COF-11Å. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	B 1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	0.503	-0.355	-0.140	0.003	0.271	-0.440	0.167	0.047	-0.278
Atomic types	H2	Н5	H6	H7					
Charge (e)	0.066	0.011	0.019	0.060					

Table S8. Atomic partial charges for the COF-11Å structure derived on DFT/B3LYP Level.

COF-14Å

Fig. S7. Model cluster used for calculating the partial charges for each atom of COF-14Å. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	B1	01	C1	C2	C3	C4	C5	C6	Н3
Charge (e)	0.389	-0.256	-0.398	0.191	-0.238	0.064	0.433	-0.565	0.134
Atomic types	Н5	H6							
Charge (a)	_0.013	0.129							

Table S9. Atomic partial charges for the COF-14Å structure derived on DFT/B3LYP Level.

Fig. S8. Model cluster used for calculating the partial charges for each atom of COF-16Å. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S10. Atomic partial charges for the COF-16Å structure derived on DFT/B3LYP Level.

Atomic types	B 1	01	C1	C2	C3	C4	C5	H2	Н5
Charge (e)	0.515	-0.258	-0.243	0.118	0.131	-0.205	0.029	0.007	0.011

Fig. S9. Model cluster used for calculating the partial charges for each atom of COF-18Å. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

						0				
T.L.L. C11	· ·	. 1	1	C (1	COE 10		1 1 1	DIT	E/DOIXD	AT 1
I Shie N LL	Atomic	narmal	charges	tor the	$() H_{-} X$	A structure	e derived	On LIF	1/831 7 P	Level
Ianic DII.	<i>i</i> nonne	partia	charges	IOI the	COI 10	n i su uctur		ULL L		LC VCI.
			0							

Atomic types	B1	01	C1	C2	C3	C4	H2	H4
Charge (e)	0.506	-0.356	-0.176	0.052	0.303	-0.513	0.054	0.183

Fig. S10. Model cluster used for calculating the partial charges for each atom of COF-42. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	N1	N2	02	04	C1	C2	C3	C4	C5	C6
Charge (e)	-0.202	-0.307	-0.488	-0.609	0.130	-0.056	-0.017	0.736	-0.245	0.518
Atomic types	C7	C8	C9	H1	H2	Н3	H7	H8	Н9	

Fig. S11. Model cluster used for calculating the partial charges for each atom of COF-43. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	N1	N2	02	07	C1	C2	C3	C4	C5	C6	C7	C8
Charge (e)	-0.216	-0.300	-0.483	-0.574	0.107	-0.028	-0.138	0.129	0.046	-0.182	0.697	-0.286
Atomic types	С9	C10	C11	C12	H1	H2	Н3	H6	H10	H11	H12	
Charge (e)	0.280	0.506	-0.261	-0.086	0.085	0.295	0.115	0.120	-0.043	0.063	0.120	

Table S13. Atomic partial charges for the COF-43 structure derived on DFT/B3LYP Level.

TT-COF

Fig. S12. Model cluster used for calculating the partial charges for each atom of TT-COF. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	B 1	01	02	S1	C1	C2	C3	C4	C5	C6
Charge (e)	0.670	-0.463	-0.345	0.015	0.157	-0.225	-0.291	0.351	0.093	-0.405
Atomic types	C7	C8	С9	H2	H6	H7				
Charge (e)	-0.210	-0.036	0 114	0 201	0.209	0.165				

Table S14. Atomic partial charges for the TT-COF structure derived on DFT/B3LYP Level.

ZnPc-Py-COF

Fig. S13. Model cluster used for calculating the partial charges for each atom of ZnPc-Py-COF. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S15. Atomic partial charges for the ZnPc-Py-COF structure derived on DFT/B3LYP Level.

Atomic types	Zn1	N1	N2	B1	01	C1	C2	C3	C4	C5
Charge (e)	0.884	-0.675	-0.762	0.585	-0.475	0.709	-0.139	-0.219	0.252	-0.057
Atomic types	C6	C7	C8	С9	Н3	H6	Н9			
	0.0.00				0.4.50	0.4.5.5	0.1.45			

2D-NiPc-BTDA-COF

Fig. S14. Model cluster used for calculating the partial charges for each atom of 2D-NiPc-BTDA-COF. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S16. Atomic	partial charges	for the 2D-NiPc	-BTDA-COF st	tructure derived of	on DFT/B3LYP Level

Atomic types	Ni1	N1	N2	N3	B1	01	S1	C1	C2	C3
Charge (e)	0.316	-0.460	-0.644	-0.417	0.697	-0.445	0.296	0.614	-0.165	-0.190
Atomic types	C4	C5	C6	C7	Н3	H7				
Charge (e)	0.257	-0.343	0.392	-0.048	0.166	0.122				

Pc-PBBA-COF

Fig. S15. Model cluster used for calculating the partial charges for each atom of Pc-PBBA-COF. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	N1	N2	N3	B1	01	C1	C2	C4	C5
Charge (e)	-0.676	-0.792	-0.690	0.519	-0.394	0.738	-0.146	-0.257	0.280
Atomic types	C6	C7	H1	H4	H7				
Charge (e)	-0.065	-0.100	0.358	0.168	0.106				

 Table S17. Atomic partial charges for the Pc-PBBA-COF structure derived on DFT/B3LYP Level.

COF-LZU1

Fig. S16. Model cluster used for calculating the partial charges for each atom of COF-LZU1. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

 Table S18. Atomic partial charges for the COF-LZU1 structure derived on DFT/B3LYP Level.

Atomic types	N1	C1	C2	C3	C4	C5	H2	Н3	Н5
Charge (e)	-0.483	0.409	-0.241	0.217	0.012	-0.101	0.152	0.048	0.076

BLP-2H

Fig. S17. Model cluster used for calculating the partial charges for each atom of BLP-2H. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S19. Atomic partial charges for the BLP-2H structure derived on DFT/B3LYP Level.

Atomic types	N1	B1	C1	C2	C3	C4	C5	C6	H1
Charge (e)	-0.357	0.373	0.288	-0.265	-0.155	0.085	0.051	-0.196	-0.115
Atomic types	H2	Н3	H6						
Charge (e)	0.158	0.136	0.123						

IL-COF-1

Fig. S18. Model cluster used for calculating the partial charges for each atom of IL-COF-1. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S20. Atomic partial charges for the IL-COF-1 structure derived on DFT/B3LYP Letter S20.	evel
---	------

Atomic types	N1	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11
Charge (e)	-0.547	-0.005	0.121	-0.083	-0.230	-0.182	0.286	-0.194	-0.146	-0.273	0.008	-0.081
Atomic types	C12	C13	C14	H4	Н5	H7	H8	Н9	H10	H12	H14	
Charge (e)	0.321	0.425	-0.248	0.143	0.111	0.117	0.121	0.142	0.085	0.013	0.153	

Fig. S19. Model cluster used for calculating the partial charges for each atom of COF-66. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

 Table S21. Atomic partial charges for the COF-66 structure derived on DFT/B3LYP Level.

Atomic types	N1	N3	B 1	01	C1	C2	C3	C4	C5	C6
Charge (e)	-0.543	-0.801	0.544	-0.402	0.642	-0.409	0.768	-0.446	-0.685	0.629
Atomic types	C7	C8	С9	C10	C11	C12	C13	H1	H2	H4
Charge (e)	-0.401	-0.038	-0.152	0.294	-0.380	0.131	-0.229	0.344	0.210	0.210
Atomic types	H7	H8	H11	H13						
Charge (e)	0.200	0.074	0.170	0.122						

Fig. S20. Model cluster used for calculating the partial charges for each atom of COF-366. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

 Table S22. Atomic partial charges for the COF-366 structure derived on DFT/B3LYP Level.

Atomic types	N1	N2	N3	C1	C2	C3	C4	C5	C6	C7
Charge (e)	-0.306	-0.386	-0.607	0.292	-0.237	0.431	-0.282	-0.254	0.058	-0.022
Atomic types	C8	С9	C10	C11	C12	C13	C14	C15	H1	H2
Charge (e)	-0.334	-0.138	-0.220	0.413	0.051	0.043	-0.117	-0.088	0.271	0.163
Atomic types	H4	H7	H8	Н9	H10	H12	H14	H15		
Charge (e)	0.159	0.124	0.124	0.124	0.124	0.097	0.103	0.093		

Fig. S21. Model cluster used for calculating the partial charges for each atom of CTF-1. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S23. Atomic partial charges for the CTF-1 structure derived on DFT/B3LYP Level.

Atomic types	N1	C1	C2	C3	H3
Charge (e)	-0.704	0.737	-0.051	-0.106	0.115

Fig. S22. Model cluster used for calculating the partial charges for each atom of CTF-2. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

	1	U						
Atomic types	N1	C1	C2	C3	C4	C5	H3	H4
Charge (e)	-0.782	0.853	-0.139	-0.108	-0.266	0.237	0.121	0.151

Table S24. Atomic partial charges for the CTF-2 structure derived on DFT/B3LYP Level.

Fig. S23. Model cluster used for calculating the partial charges for each atom of PPy-COF. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

	no partiar o	101800 101		or survey	0 0011 00	011 21 1/20			
Atomic types	B1	01	C1	C2	С3	C4	C5	H2	H4
Charge (e)	-0.782	-0.593	-0.102	-0.278	0.237	-0.231	-0.039	0.129	0.135

Table S25. Atomic partial charges for the PPy-COF structure derived on DFT/B3LYP Level.

TP-COF

Fig. S24. Model cluster used for calculating the partial charges for each atom of TP-COF. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table	S26 .	Atomic	partial	charges	for t	he TP	-COF	⁷ structure	derived	on D	FT/B	3LYP	Level
-------	--------------	--------	---------	---------	-------	-------	------	------------------------	---------	------	------	------	-------

Atomic types	B 1	01	C1	C2	С3	C4	C5	C6	C7
Charge (e)	0.632	-0.411	0.260	-0.327	0.045	-0.128	-0.226	0.200	-0.224
Atomic types	C8	H2	Н5	H7					
Charge (e)	-0.020	0.176	0.125	0.140					

Star-COF-1

Fig. S25. Model cluster used for calculating the partial charges for each atom of Star-COF-1. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S27. Atomic partial charges for the Star-COF-1 structure derived on DFT/B3LYP Level.

Atomic types	B1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	0.534	-0.342	-0.085	-0.116	0.112	0.045	0.008	-0.145	-0.185
Atomic types	C8	H1	H6	H7					

Star-COF-2

Fig. S26. Model cluster used for calculating the partial charges for each atom of Star-COF-2. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S28. Atomic partial charges for the Star-COF-2 structure derived on DFT/B3LYP Level.

Atomic types	B 1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	0.590	-0.424	-0.018	0.195	-0.245	-0.244	-0.080	0.092	0.045
Atomic types	C8	С9	C10	C11	Н3	H4	Н9	H10	
Charge (e)	0.018	-0.096	-0.189	0.053	0.168	0.168	0.126	0.138	

Star-COF-3

Fig. S27. Model cluster used for calculating the partial charges for each atom of Star-COF-3. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S29. Atomic partial charges for the Star-COF-3 structure derived on DFT/B3LYP Level.

Atomic types	B 1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	0.551	-0.358	0.102	-0.187	-0.053	-0.165	0.130	0.033	0.013
Atomic types	C8	С9	C10	H2	Н3	H8	Н9		
Charge (e)	-0.138	-0.190	0.076	0.127	0.097	0.130	0.133		

Fig. S28. Model cluster used for calculating the partial charges for each atom of TpPa-1. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S30. Atomic partial charges for the TpPa-1 structure derived on DFT/B3LYP Level.

Atomic types	N1	01	C1	C2	C3	C4	C5	H1
Charge (e)	-0.459	-0.639	0.270	-0.228	0.313	-0.685	0.860	0.372
Atomic types	H2	Н3						
Charge (e)	0.161	0.102						

Fig. S29. Model cluster used for calculating the partial charges for each atom of TpPa-2. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S31. Atomic partial charges for the TpPa-2 structure derived on DFT/B3LYP Level.

Atomic types	N1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	-0.348	-0.676	0.179	-0.345	0.063	-0.169	0.246	-0.603	0.754
Atomic types	H1	H2	H4	Н5					
Charge (e)	0.403	0.196	0.061	0.117					

DAAQ-TFP COF

Fig. S30. Model cluster used for calculating the partial charges for each atom of DAAQ-TFP COF. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S31. Atomic partial charges for the DAAQ-TFP COF structure derived on DFT/B3LYP Level.

Atomic types	N1	06	C1	C2	C3	C4	C5	C6	C7	C8
Charge (e)	-0.517	-0.563	0.362	-0.248	0.031	-0.198	-0.064	0.660	0.406	-0.768
Atomic types	С9	H1	H2	Н3	H7	09				

TpBD

Fig. S31. Model cluster used for calculating the partial charges for each atom of TpBD. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

 Table S33. Atomic partial charges for the TpBD structure derived on DFT/B3LYP Level.

Atomic types	N1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	-0.517	-0.705	0.045	-0.110	-0.293	0.405	0.315	-0.602	0.759
Atomic types	H1	H2	Н3	Н5					
Charge (e)	0.450	0.120	0.152	0.112					

Fig. S32. Model cluster used for calculating the partial charges for each atom of TpPa-4F. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	N1	05	C1	C2	C3	C4	C5	C6	F2
Charge (e)	-0.067	-0.672	-0.220	0.288	0.116	-0.532	0.726	0.103	-0.184
Atomic types	F6	H1	Н3						
Charge (e)	-0.129	0.370	0.201						

Table S34. Atomic partial charges for the TpPa-4F structure derived on DFT/B3LYP Level.

TpBD-(NO₂)₂

Fig. S33. Model cluster used for calculating the partial charges for each atom of $TpBD-(NO_2)_2$. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S35. Atomic partial charges for the TpBD-(NO₂)₂ structure derived on DFT/B3LYP Level.

Atomic types	N4	N6	04	09	C1	C2	C3	C4	C5
Charge (e)	0.637	-0.347	-0.420	-0.562	0.070	-0.073	-0.217	0.023	-0.272
Atomic types	C6	C7	C8	С9	H2	Н3	Н5	H6	H7
Charge (e)	0.210	0.134	-0.495	0.685	0.157	0.157	0.178	0.335	0.220

TpBD-Me₂

Fig. S34. Model cluster used for calculating the partial charges for each atom of TpBD-Me₂. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	N1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	-0.383	-0.676	0.120	-0.398	-0.186	-0.234	0.237	0.102	0.261
Atomic types	C8	С9	C10	H1	H2	Н3	H4	H7	H10

Table S36. Atomic partial charges for the TpBD-Me₂ structure derived on DFT/B3LYP Level.

Fig. S35. Model cluster used for calculating the partial charges for each atom of COF-102. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	B1	01	C1	C2	C3	C4	C5	H2	Н3
Charge (e)	0.787	-0.650	-0.176	-0.088	-0.123	0.070	-0.124	0.099	0.112

Table S37. Atomic partial charges for the COF-102 structure derived on DFT/B3LYP Level.

Fig. S36. Model cluster used for calculating the partial charges for each atom of COF-103. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

	1	e		•					
Atomic types	B1	01	C1	C2	C3	C4	Si1	H2	Н3
Charge (e)	0.755	-0.614	-0.228	-0.073	-0.202	0.262	-0.276	0.115	0.107

Table S38. Atomic partial charges for the COF-103 structure derived on DFT/B3LYP Level.

Fig. S37. Model cluster used for calculating the partial charges for each atom of COF-105. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	B 1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	0.599	-0.417	0.257	-0.331	0.043	-0.176	-0.067	-0.191	0.118
Atomic types	Si1	H2	Н5	H6					

 Table S39. Atomic partial charges for the COF-105 structure derived on DFT/B3LYP Level.

Fig. S38. Model cluster used for calculating the partial charges for each atom of COF-108. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	B 1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	0.610	-0.418	0.260	-0.332	0.045	-0.165	-0.104	-0.154	0.156
Atomic types	C8	H2	Н5	H6					

Table S40. Atomic partial charges for the COF-108 structure derived on DFT/B3LYP Level.

Fig. S39. Model cluster used for calculating the partial charges for each atom of COF-202. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	B 1	01	C1	C2	C3	C4	C5	C6	C7
Charge (e)	0.754	-0.631	-0.209	-0.111	-0.197	0.327	-0.384	0.552	-0.323
Atomic types	Si1	H2	Н3	H7					
Charge (e)	0.918	0.136	0.098	0.050					

Table S41. Atomic partial charges for the COF-202 structure derived on DFT/B3LYP Level.

CTC-COF

Fig. S40. Model cluster used for calculating the partial charges for each atom of CTC-COF. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

 Table S42. Atomic partial charges for the CTC-COF structure derived on DFT/B3LYP Level.

Atomic types	B1	01	C1	C2	C3	C4	C5	C6
Charge (e)	0.587	-0.411	-0.127	-0.080	0.276	-0.358	0.030	0.024
Atomic types	H2	H4	H6	H7				
Charge (e)	0.090	0.090	0.003	0.029				

Fig. S41. Model cluster used for calculating the partial charges for each atom of COF-300. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	N1	C1	C2	C3	C4	C5	C6	C7	C8
Charge (e)	-0.455	0.024	0.069	-0.090	-0.341	0.453	0.193	0.024	-0.161
Atomic types	С9	Н3	H4	H6	H8	Н9			
Charge (e)	-0.023	0. 105	0.169	0.028	0.130	0.075			

Table S43. Atomic partial charges for the COF-300 structure derived on DFT/B3LYP Level.

Fig. S42. Model cluster used for calculating the partial charges for each atom of COF-320. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	N1	C1	C2	C3	C4	C5	C6	C7	C8
Charge (e)	-0.619	0.240	0.014	-0.130	-0.355	0.546	-0.035	-0.125	-0.151
Atomic types	CO	C10	110						
ritonne types	C9	C10	H3	H4	H 7	H8	H10		

 Table S44. Atomic partial charges for the COF-320 structure derived on DFT/B3LYP Level.

Fig. S43. Model cluster used for calculating the partial charges for each atom of NPN-1. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Table S45. Atomic partial charges for the NPN-1 structure derived on DFT/B3LYP Level.

Atomic types	N1	01	C1	C2	C3	C4	C5	C6	Н3
Charge (e)	0.386	-0.516	0.064	0.080	0.022	-0.210	-0.080	0.005	0.065
Atomic types	H4	Н5							
Charge (e)	0.144	0.154							

Fig. S44. Model cluster used for calculating the partial charges for each atom of NPN-2. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	N1	01	C1	C2	C3	C4	C5	C6	H2
Charge (e)	0.372	-0.499	-0.060	-0.006	-0.214	-0.156	-0.104	0.062	0.099
Atomic types	Н3	Si1							
Charge (e)	0.157	0.372							

 Table S46. Atomic partial charges for the NPN-2 structure derived on DFT/B3LYP Level.

Fig. S45. Model cluster used for calculating the partial charges for each atom of NPN-3. The terminations of the cluster were saturated with methyl groups to minimize the boundary effects.

Atomic types	N1	01	C1	C2	C3	C4	C5	C6	H2
Charge (e)	0.342	-0.508	-0.060	0.339	-0.191	0.012	-0.012	-0.164	0.091
Atomic types	Н3	Н5							
Charge (e)	-0.035	0.151							

 Table S47. Atomic partial charges for the NPN-3 structure derived on DFT/B3LYP Level.

4. Separation properties of the top 4 COFs

Materials	S	$\Delta N_{\rm CO_2} \pmod{\rm kg^{-1}}$	S_{sp}	R (%)
TaPa-1	84	1.77	1075	87.6
CTF-2-AB	66	2.32	861	85.8
NPN-1	49	2.33	562	86.0
DAAQ-TFP COF	44	1.10	340	89.3

Table S48. Calculated results of the four evaluation criteria of the top 4 COFs.

References

- 1. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger and O. M. Yaghi, Science, 2005, 310, 1166-1170.
- A. P. Cαe, H. M. El-Kaderi, H. Furukawa, J. R. Hunt and O. M. Yaghi, J. Am. Chem. Soc., 2007, 129, 12914– 12915.
- 3. R. W. Tilford, S. J. Mugavero III, P. J. Pellechia and J. J. Lavigne, Adv. Mater., 2008, 20, 2741–2746.
- 4. S. Wan, J. Guo, J. Kim, H. Ihee and D. Jiang, Angew. Chem., Int. Ed., 2009, 48, 5439–5442.
- 5. S. Wan, J. Guo, J. Kim, H. Ihee and D. Jiang, Angew. Chem., Int. Ed., 2008, 47, 8826–8830.
- F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki and O. M. Yaghi, J. Am. Chem. Soc., 2011, 133, 11478– 11481.
- 7. P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem., Int. Ed., 2008, 47, 3450-3453.
- 8. M. J. Bojdys, J. Jeromenok, A. Thomas and M. Antonietti, Adv. Mater., 2010, 22, 2202–2205.
- 9. K. T. Jackson, T. E. Reich and H. M. El-Kaderi, Chem. Commun., 2012, 48, 8823-8825.
- E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar and W. R. Dichtel, *Angew. Chem. Int. Ed.*, 2012, **51**, 2623 –2627.
- X. Ding, L. Chen, Y. Honsho, X. Feng, O. Saenpawang, J. Guo, A. Saeki, S. Seki, S. Irle, S. Nagase, V. Parasuk and D. Jiang, *J. Am. Chem. Soc.*, 2011, 133, 14510–14513.
- S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, and R. Banerjee, J. Am. Chem. Soc., 2012, 134, 19524–19527.
- 13. B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine and R. Banerjee, J. Am. Chem. Soc., 2013, 135,

5328-5331.

- S. Chandra, S. Kandambeth, B. P. Biswal, B. Lukose, S. M. Kunjir, M. Chaudhary, R. Babarao, T. Heine, and R. Banerjee, J. Am. Chem. Soc., 2013, 135, 17853–17861.
- C. R. DeBlase, K. E. Silberstein, T. -T. Truong, H. D. Abruña and W. R. Dichtel, Energy Storage, J. Am. Chem. Soc., 2013, 135, 16821–16824.
- S. Wan, F. Gandara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan,
 S. Seki, J. F. Stoddart and O. M. Yaghi, *Chem. Mater.*, 2011, 23, 4094–4097.
- M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding and H. M. El-Kaderi, *Chem. Eur. J.*, 2013, **19**, 3324 3328.
- M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, and T. Bein, *Angew. Chem. Int.* Ed., 2013, 52, 2920–2924.
- 19. X. Feng, Y. Dong and D. Jiang, CrystEngComm, 2013, 15, 1508–1511.
- 20. E. L. Spitler and W. R. Dichtel, Nat. Chem., 2010, 2, 672–677.
- S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su and W. Wang, J. Am. Chem. Soc., 2011, 133, 19816– 19822.
- 22. H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Côté, R. E. Taylor, M. O'Keeffe and O. M. Yaghi, *Science*, 2007, **316**, 268–272.
- 23. J. R. Hunt, C. J. Doonan, J. D. LeVangie, A. P. C ôt éand O. M. Yaghi, J. Am. Chem. Soc., 2008, 130, 11872–11873.
- 24. D. Beaudoin, T. Maris and J. D. Wuest, Nat., Chem., 2013, 5,830-834.
- F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klock, M. O'Keeffe and O. M. Yaghi, *J. Am. Chem. Soc.*, 2009, 131, 4570–4571.
- 26. J. -T. Yu, Z. C., J. Sun, Z. -T. Huang and Q. -Y. Zheng, J. Mater. Chem., 2012, 22, 5369–5373.
- Y. -B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gándara, A. Duong, X. Zou and O. M. Yaghi, J. Am. Chem. Soc., 2013, 135, 16336–16339.
- 28. Accelrys Inc., Materials Studio, V5.0, Accelrys Inc., San Diego, CA, 2003.
- A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024-10039.