Supporting Information

Fine-Tuning Solid-State Luminescence in NPIs (1,8naphthalimides): Impact of Molecular Environment and Cumulative Interactions

Sanjoy Mukherjee* and Pakkirisamy Thilagar*

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore–560012, India Fax: +91-80-2360-1552; Tel: +91-80-2293-3352; E-mail: sanjoymkj@ipc.iisc.ernet.in, thilagar@ipc.iisc.ernet.in

Table of Contents

NMR Characterisation Data	Page S02-S05
Hirsfeld Surface analysis	Page S06-S09
SEM micrographs	Page S010-S11
AIEE of compound 5-7 and TEM micrographs	Page S11-S12
DFT Computational Data	Page S13-S18
Solid-state structures of Compounds 5-7	Page S18-S20
DFT Data Tables	Page S20-S30

Figure S2: ¹³C NMR of **5** (CDCl₃).

Figure S4: ¹H NMR of **6** (CDCl₃).

Figure S6: ¹H NMR of **7** (CDCl₃).

Figure S7: ¹³C NMR of **7** (CDCl₃).

Figure S8: Dihedral arrangements of the two aryl units in the molecular structures (X-ray) of 5-7 (left to right respectively).C = Black, H = Grey, F = Green, Br = Brown, N = Blue, O = Oxygen.

Figure S9: Views of the Hirshfeld surface for compound **1** mapped with d_{norm} property showing from both sides of the molecular plane (left and middle) and showing 0...H interaction assisted π - π stacking interactions (right) between neighboring molecules.

Figure S10: Views of the Hirshfeld surface for compound **2** mapped with d_{norm} property showing from both sides of the molecular plane (top left and top right) and showing 0...H interaction assisted π - π stacking interactions (bottom left and bottom right) between neighboring molecules.

Figure S11: Views of the Hirshfeld surface for compound **4** mapped with d_{norm} property showing from both sides of the molecular plane (left and middle) and showing S···H interactions between neighboring molecules.

Figure S12: Views of the Hirshfeld surface for compound **5** mapped with d_{norm} property showing from both sides of the molecular plane (left and middle) and showing O···H interaction assisted π - π stacking interactions (right) between neighboring molecules.

Figure S13: Views of the Hirshfeld surface for compound **6** mapped with d_{norm} property showing from both sides of the molecular plane (left and middle) and showing 0...H interaction assisted π - π stacking interactions (right) between neighboring molecules.

Figure S14: Views of the Hirshfeld surface for compound **7** mapped with d_{norm} property showing from both sides of the molecular plane (left and middle) and showing 0...H interaction assisted interactions (right) between neighboring molecules.

Figure S15: Fingerprint plot for compound **1** showing all interactions (left) and resolved into 0…H interactions (right) which have 16.1% contribution.

Figure S16: Fingerprint plot for compound **2** showing all interactions (left) and resolved into 0…H interactions (right) which have 24.2% contribution.

Figure S17: Fingerprint plot for compound **4** showing all interactions (left) and resolved into 0...H interactions (middle) which have 12.4% contribution and S...H interactions which have 7.3% contribution.

Figure S18: Fingerprint plot for compound **5** showing all interactions (left) and resolved into F····H interactions (middle) which have 11.9% contribution and O····H interactions which have 16.8% contribution.

Figure S19: Fingerprint plot for compound **6** showing all interactions (left) and resolved into Br···H interactions (middle) which have 16.1% contribution and O···H interactions which have 16.7% contribution.

Figure S20: Fingerprint plot for compound **7** showing all interactions (left) and resolved into 0...H interactions (middle) which have 34.0% contribution.

Figure S21: SEM images (left, middle) and microscopic images (right) of powder state of $1 (\lambda_{ex} = 355 \text{ nm})$.

Figure S22: SEM images (left, middle) and microscopic images (right) of powder state of $2 (\lambda_{ex} = 355 \text{ nm})$.

Figure S23: SEM images (left, middle) and microscopic images (right) of powder state of $3 (\lambda_{ex} = 355 \text{ nm})$.

Figure S24: SEM images (left, middle) and microscopic images (right) of powder state of 4 (λ_{ex} = 355 nm).

Figure S25: SEM images (left, middle) and microscopic images (right) of powder state of 5 (λ_{ex} = 355 nm).

Figure S26: SEM images (left, middle) and microscopic images (right) of powder state of $6 (\lambda_{ex} = 355 \text{ nm})$.

Figure S27: SEM images (left, middle) and microscopic images (right) of powder state of 7 (λ_{ex} = 355 nm).

Figure S28: Photographs of 100μ M solutions of **5-7** respectively under UV lamp in different THF-H₂O solvent mixture. (From left to right 100%THF, 90% THF. 80% THF, 70% THF, 60% THF, 50% THF, 40% THF, 30% THF, 20% THF and 10% THF content)

Figure S29: Emission spectra of **5** in THF-H₂O solvent mixtures at different ratios (left) and emission intensity changes at initial and final λ_{max} (right); $\lambda_{ex} = 355$ nm, 10⁻⁴ M concentration (Inset: Photographs of emission change from 100%-THF(left) to 10%-THF:90%-H₂O (right) solvent mixture under 265 nm UV-lamp) and TEM images of the aggregates.

Figure S30: Emission spectra of **6** in THF-H₂O solvent mixtures at different ratios (left) and emission intensity changes at initial and final λ_{max} (right); $\lambda_{ex} = 355$ nm, 10⁻⁴ M concentration (Inset: Photographs of emission change from 100%-THF(left) to 10%-THF:90%-H₂O (right) solvent mixture under 265 nm UV-lamp) and TEM images of the aggregates.

Figure S31: Emission spectra of **7** in THF-H₂O solvent mixtures at different ratios (left) and emission intensity changes at initial and final λ_{max} (right); λ_{ex} = 355 nm, 10⁻⁴ M concentration (Inset: Photographs of emission change from 100%-THF(left) to 10%-THF:90%-H₂O (right) solvent mixture under 265 nm UV-lamp) and TEM images of the aggregates.

Figure S32: DFT B3LYP/6-31G(d) obtained ground state (left) and 1^{st} excited state (right) optimized structures of **1**. Relative orientations of napthalimide and aryl planes are shown. (Colour codes: C = Black, N = Blue, O = Red, H = Gray)

Figure S33: DFT B3LYP/6-31G(d) obtained ground state (left) and 1^{st} excited state (right) optimized structures of **2.** Relative orientations of napthalimide and aryl planes are shown. (Colour codes: C = Black, N = Blue, O = Red, H = Gray)

Figure S34: DFT B3LYP/6-31G(d) obtained ground state (left) and 1^{st} excited state (right) optimized structures of **3.** Relative orientations of napthalimide and aryl planes are shown. (Colour codes: C = Black, N = Blue, O = Red, H = Gray, S = Orange)

Figure S35: DFT B3LYP/6-31G(d) obtained ground state (left) and 1st excited state (right) optimized structures of **4.** Relative orientations of napthalimide and aryl planes are shown. (Colour codes: C = Black, N = Blue, O = Red, H = Gray, S = Orange)

Figure S36: DFT B3LYP/6-31G(d) obtained ground state (left) and 1^{st} excited state (right) optimized structures of **5**. Relative orientations of napthalimide and aryl planes are shown. (Colour codes: C = Black, N = Blue, O = Red, H = Gray, F = Green)

Figure S37: DFT B3LYP/6-31G(d) obtained ground state (left) and 1st excited state (right) optimized structures of **6.** Relative orientations of napthalimide and aryl planes are shown. (Colour codes: C = Black, N = Blue, O = Red, H = Gray, Br = Brown)

Figure S38: DFT B3LYP/6-31G(d) obtained ground state (left) and 1st excited state (right) optimized structures of **7**. Relative orientations of napthalimide and aryl planes are shown. (Colour codes: C = Black, N = Blue, O = Red, H = Gray)

Figure S39: DFT B3LYP/6-31G(d) obtained ground state Frontier-Molecular-Orbitals of 1-7 (isovalue = 0.04)

Figure S40: TD-DFT simulated UV-Vis absorption spectra of 1 (no of states considered = 20, FWHM = 15 nm)

Figure S41: TD-DFT simulated UV-Vis absorption spectra of 2 (no of states considered = 20, FWHM = 15 nm)

Figure S42: TD-DFT simulated UV-Vis absorption spectra of **3** (no of states considered = 20, FWHM = 15 nm)

Figure S43: TD-DFT simulated UV-Vis absorption spectra of 4 (no of states considered = 20, FWHM = 15 nm)

Figure S44: TD-DFT simulated UV-Vis absorption spectra of 5 (no of states considered = 20, FWHM = 15 nm)

Figure S45: TD-DFT simulated UV-Vis absorption spectra of 6 (no of states considered = 20, FWHM = 15 nm)

Figure S46: TD-DFT simulated UV-Vis absorption spectra of 7 (no of states considered = 20, FWHM = 15 nm)

Figure S47: Dimeric π - π stacking in solid state structure of **5** (left) and its space fill representation (right)

Figure S48: Solid state weak interactions in 5 (left) and its space-fill representation (right)

Figure S49: Dimeric π - π stacking in solid state structure of **6** (left) and its space fill representation (right)

Figure S50: Solid state weak interactions in 6 (left) and its space-fill representation (right)

Figure S51: Dimeric π - π stacking in solid state structure of 7 (left) and its space fill representation (right)

Figure S52: Solid state weak interactions in 7 (left) and its space-fill representation (right)

DFT computational data (Energy and Coordinates of the optimized geometries)

5 (Ground state optimised geometry)

Energy = -1150.87656963 a.u.

Table S1: Coordinates of optimised structure of 2 (G	ίS)
--	-----

Center	Atomic	Atomic	Coord	inates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	10.015440	6.325540	-0.543097
2	6	0	8.343828	4.967205	-1.797838
3	6	0	9.759997	5.499805	0.656341
4	6	0	10.447822	5.758561	1.828502
5	6	0	10.228137	4.992921	2.987971
6	6	0	9.309911	3.956969	2.965750
7	6	0	8.576406	3.647393	1.777934
8	6	0	7.631145	2.594425	1.708878
9	6	0	6.952939	2.338493	0.532474
10	6	0	7.191538	3.119821	-0.614712
11	6	0	8.107892	4.156841	-0.575942
12	6	0	8.817577	4.440552	0.617633
13	6	0	9.500672	6.839833	-2.896293
14	6	0	10.617183	6.276463	-3.775665
15	6	0	9.683589	3.363995	5.253339
16	6	0	10.851848	2.653228	5.526767
17	6	0	11.466100	2.792969	6.771220

6	0	10.891775	3.642334	7.711262
6	0	9.725229	4.353666	7.450148
6	0	9.114401	4.210411	6.204449
7	0	9.264280	6.019908	-1.692148
8	0	10.832510	7. <i>23838</i> 7	-0.557968
8	0	7.766502	4.742982	-2.854633
8	0	9.028331	3.158525	4.041746
1	0	11.166767	6.571330	1.837899
1	0	6.666999	2.927778	-1.544935
1	0	<i>10.778012</i>	5.214739	3.894873
1	0	7.450042	1.993376	2.593099
1	0	6.230573	1.528761	0.489279
1	0	12.373635	2.252991	7.019180
1	0	9.308559	5.000658	8.214655
1	0	8.558236	6.870597	-3.443817
1	0	11.266341	1.992934	4.771875
1	0	8.198460	4.742437	5.968567
1	0	11.563032	6.242428	-3.226298
1	0	10.755765	6.915541	-4.655117
1	0	10.367158	5.268972	-4.122288
1	0	9.754264	7.841156	-2.547227
9	0	11.482288	3.777394	8.915258
	6 6 7 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 9	6 0 6 0 7 0 8 0 8 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

5 (1st excited-state optimised geometry)

Energy = -1150.77284477 a.u.

Table S2:	Coordinates	of optimised	structure	of 2 (ES)

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-2.780963	-1.743767	-0.008050	
2	6	0	-3.485588	0.591515	-0.562638	
3	6	0	-1.471816	-1.232141	0.396276	
4	6	0	-0.505543	-2.141704	0.871242	
5	6	0	0.751300	-1.682577	1.242606	
6	6	0	1.016766	-0.321542	1.133396	
7	6	0	0.106078	0.666465	0.711038	
8	6	0	0.353309	2.059156	0.639605	
9	6	0	-0.644387	2.928394	0.179647	
10	6	0	-1.886390	2.453641	-0.215755	
11	6	0	-2.169226	1.071780	-0.151348	
12	6	0	-1.189894	0.160013	0.316014	
13	6	0	-5.019829	-1.298361	-0.904116	
14	6	0	-6.018947	-1.346183	0.252956	
15	6	0	3.316663	0.199516	0.678955	
16	6	0	4.588651	0.631325	1.203519	
17	6	0	5.672654	0.746125	0.375970	
18	6	0	5.506357	0.434326	-0.991302	
19	6	0	4.274139	0.010597	-1.539777	
20	6	0	3.183297	-0.109892	-0.719940	
21	7	0	-3.701787	-0.798897	-0.484955	
22	8	0	-3.081277	-2.943610	0.050661	
23	8	0	-4.384337	1.338944	-0.966701	
24	8	0	2.354437	0.117089	1.541689	
25	1	0	-0.769587	-3.190287	0.934275	
26	1	0	-2.665195	3.116497	-0.574592	
27	1	0	1.511048	-2.359281	1.621603	
28	1	0	1.304006	2.461750	0.972227	
29	1	0	-0.437628	3.995010	0.139602	
30	1	0	6.644677	1.065902	0.732681	
31	1	0	4.220340	-0.208511	-2.599872	
32	1	0	-5.375469	-0.626935	-1.686285	
33	1	0	4.643975	0.855307	2.261832	

34	1	0	2.221432	-0.428317	-1.093742
35	1	0	-5.658415	-2.011802	1.043320
36	1	0	-6.986386	-1.723811	-0.099487
37	1	0	-6.172650	-0.345377	0.668635
38	1	0	-4.863280	-2.297685	-1.312364
39	9	0	6.548394	0.542722	-1.794208

TD-DFT obtained Excitation energies and oscillator strengths:

Excitation energies and oscillator strengths:

Excited 87	State -> 88	1:	Singlet-A 0.69440	3.5776 eV	346.56 nm	f=0.2674	<s**2>=0.000</s**2>			
This sta Total En	This state for optimization and/or second-order correction.									
Copying	the ex	cited	state density for	this state	as the 1-pa	rticle Rho	CI density.			
Excited 85 86	State -> 88 -> 88	2:	Singlet-A -0.32719 0.61017	3.7232 eV	333.00 nm	f=0.0005	<s**2>=0.000</s**2>			
Excited 82 84 87 87	State -> 88 -> 88 -> 89 -> 90	3:	Singlet-A 0.24568 0.59858 0.16611 0.15800	4.1052 eV	302.02 nm	f=0.0000	<s**2>=0.000</s**2>			
Excited 82 83 86 87 87	State -> 88 -> 88 -> 91 -> 89 -> 90	4:	Singlet-A 0.45574 0.43875 0.10106 -0.18940 -0.19116	4.1933 eV	295.67 nm	f=0.0044	<s**2>=0.000</s**2>			
Excited 85 86	State -> 88 -> 88	5:	Singlet-A 0.61880 0.33529	4.2295 eV	293.14 nm	f=0.0001	<s**2>=0.000</s**2>			
Excited 82 83 84 87 87	State -> 88 -> 88 -> 88 -> 89 -> 90	6:	Singlet-A 0.42780 -0.32652 -0.32058 0.21267 0.19478	4.3835 eV	282.84 nm	f=0.0088	<s**2>=0.000</s**2>			
Excited 80 81 83 87 87	State -> 88 -> 88 -> 88 -> 89 -> 90	7:	Singlet-A 0.11531 -0.10745 0.14076 0.57015 -0.33875	4.7035 eV	263.60 nm	f=0.0536	<s**2>=0.000</s**2>			
Excited 80 81 87 87	State -> 88 -> 88 -> 89 -> 91	8:	Singlet-A -0.35623 0.41598 0.15404 0.39128	4.8304 eV	256.67 nm	f=0.0189	<s**2>=0.000</s**2>			
Excited 80 81 87	State -> 88 -> 88 -> 91	9:	Singlet-A 0.44065 0.52704 -0.14449	4.9576 eV	250.09 nm	f=0.0025	<s**2>=0.000</s**2>			
Excited 87	State -> 92	10:	Singlet-A 0.69096	5.0657 eV	244.75 nm	f=0.0003	<s**2>=0.000</s**2>			
Excited	State	11:	Singlet-A	5.2138 eV	237.80 nm	f=0.0447	<s**2>=0.000</s**2>			

80 81 83 84 87 87	-> 88 -> 88 -> 88 -> 88 -> 90 -> 91		0.37392 -0.14863 0.10233 0.11045 0.12022 0.51218					
Excited 80 81 85 85 86 87	State -> 92 -> 92 -> 89 -> 90 -> 89 -> 92	12:	Singlet-A -0.17988 -0.27234 0.47389 -0.13088 0.36206 -0.11055	5.3000	eV	233.93 nm	f=0.0217	<s**2>=0.000</s**2>
Excited 79 83 84 84 87 87 87	State -> 88 -> 88 -> 93 -> 93 -> 90 -> 90 -> 91	13:	Singlet-A 0.10149 0.35677 -0.10803 -0.12676 0.17260 0.48196 -0.15563	5.3329	eV	232.49 nm	£=0.4767	<s**2>=0.000</s**2>
Excited 85 85 86 86 86	State -> 89 -> 91 -> 89 -> 90 -> 91	14:	Singlet-A -0.32228 0.13747 0.45719 0.26028 -0.26769	5.4485	eV	227.56 nm	f=0.0014	<s**2>=0.000</s**2>
Excited 82 85 85 86 86 86	State -> 88 -> 90 -> 91 -> 89 -> 90 -> 91	15:	Singlet-A -0.12514 -0.16267 -0.26622 0.12464 0.33941 0.48014	5.4561	eV	227.24 nm	f=0.0001	<s**2>=0.000</s**2>
Excited 83 83 84 84	State -> 90 -> 91 -> 89 -> 90	16:	Singlet-A 0.23009 0.10208 0.59461 0.21847	5.6259	eV	220.38 nm	f=0.0310	<s**2>=0.000</s**2>
Excited 81 85 85 86	State -> 92 -> 89 -> 90 -> 90	17:	Singlet-A 0.10168 0.24372 0.53708 0.35378	5.7246	eV	216.58 nm	f=0.0005	<s**2>=0.000</s**2>
Excited 83 84 84 84 87	State -> 89 -> 89 -> 90 -> 91 -> 93	18:	Singlet-A 0.47031 -0.16293 0.37956 0.16842 -0.19985	5.7754	eV	214.68 nm	f=0.0127	<s**2>=0.000</s**2>
Excited 82 83 84 85 85 85 85 86 86 86 86	State -> 91 -> 89 -> 91 -> 89 -> 90 -> 91 -> 89 -> 90 -> 91 -> 91	19:	Singlet-A -0.17005 0.11574 -0.18374 0.17505 -0.30620 0.10057 -0.30850 0.37377 -0.16297	5.8404	eV	212.29 nm	f=0.0053	<s**2>=0.000</s**2>
Excited 79	State -> 88	20:	Singlet-A 0.11459	5.8531	eV	211.83 nm	f=0.0458	<s**2>=0.000</s**2>

80	->	89	0.14683
80	->	90	0.14483
81	->	89	-0.11811
81	->	90	-0.10207
82	->	91	0.13901
83	->	89	-0.22680
83	->	91	-0.18940
84	->	89	0.19925
84	->	91	0.38417
85	->	90	-0.13476
86	->	89	-0.13059
86	->	90	0.16122
86	->	91	-0.10003
87	->	93	-0.13086

6 (Ground state optimised geometry)

Energy = -3622.74788231 a.u.

Table S3: Coordinates of optimised structure of **3** (GS)

Center	Atomic	Atomic	Coord	inates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	10.012220	6.328898	-0.541445
2	6	0	8.339431	4.971736	-1.795267
3	6	0	9.764784	5.496140	0.655196
4	6	0	10.457891	5.750902	1.824965
5	6	0	10.246034	4.978332	2.981518
6	6	0	9.330213	3.940801	2.958173
7	6	0	8.590912	3.635268	1.773340
8	6	0	7.646585	2.581428	1.704262
9	6	0	6.963246	2.330206	0.529873
10	6	0	7.195587	3.116998	-0.614984
11	6	0	8.110378	4.155323	-0.575906
12	6	0	8.824941	4.434705	0.615837
13	6	0	9.488420	6.851319	-2.890708
14	6	0	10.603079	6.293611	-3.776039
15	6	0	9.695468	3.352351	5.248431
16	6	0	10.838950	2.618996	5.560010
17	6	0	11.433892	2.772543	6.812411
18	6	0	10.872936	3.658816	7.731243
19	6	0	9.727121	4.391396	7.421938
20	6	0	9.133301	4.235143	6.169622
21	7	0	9.257901	6.026074	-1.688870
22	8	0	10.825983	7.244578	-0.554618
23	8	0	7.758182	4.750707	-2.850462
24	8	0	9.059869	3.132710	4.031385
25	1	0	11.175298	6.564979	1.835139
26	1	0	6.666842	2.928081	-1.543477
27	1	0	10.801149	5.196530	3.886179
28	1	0	7.469896	1.976406	2.586651
29	1	0	6.241369	1.520073	0.486330
30	1	0	12.321970	2.206941	7.071907
31	1	0	9.300863	5.071519	8.151103
32	1	0	8.544001	6.882186	-3.434822
33	1	0	11.250343	1.930174	4.829176
34	1	0	8.235858	4.786373	5.907523
35	1	0	11.551060	6.259561	-3.230323
36	1	0	10.737025	6.936378	-4.653482
37	1	0	10.353807	5.286976	-4.125551
38	1	0	9.740982	7.851827	-2.538631
39	35	0	11.684468	3.868431	9.447125

6 (1st excited-state optimised geometry)

Energy = -3622.64269191 a.u.

Table S4: Coordinates of optimised structure of 3 (ES)

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	-3.670711	-1.835163	0.015531
2	6	0	-4.554756	0.429670	-0.575489
3	6	0	-2.408478	-1.216032	0.416867
4	6	0	-1.374561	-2.039339	0.907437
5	6	0	-0.159586	-1.476964	1.275726
6	6	0	-0.000948	-0.100533	1.148761
7	6	0	-0.987086	0.805172	0.710190
8	6	0	-0.849930	2.211761	0.620836
9	6	0	-1.911632	2.993836	0.148077
10	6	0	-3.110826	2.417324	-0.244497
11	6	0	-3.283479	1.018235	-0.164188
12	6	0	-2.237098	0.192722	0.318185
13	6	0	-5.932008	-1.578183	-0.901684
14	6	0	-6.947628	-1.654076	0.239225
15	6	0	2.254727	0.582274	0.699047
16	6	0	3.486473	1.112711	1.219733
17	6	0	4.567665	1.282162	0.397625
18	6	0	4.455293	0.931740	-0.971745
19	6	0	3.246240	0.412926	-1.504627
20	6	0	2.157948	0.236046	-0.690679
21	7	0	-4.660394	-0.972266	-0.480244
22	8	0	-3.876516	-3.054016	0.091130
23	8	0	-5.508154	1.097219	-0.994636
24	8	0	1.292249	0.448987	1.557274
25	1	0	-1.554940	-3.104616	0.984311
26	1	0	-3.938443	3.011880	-0.613573
27	1	0	0.649928	-2.086177	1.666086
28	1	0	0.066260	2.690894	0.948816
29	1	0	-1.789795	4.072909	0.095234
30	1	0	5.503067	1.677536	0.775614
31	1	0	3.195195	0.160772	-2.557371
32	1	0	-6.320030	-0.962918	-1.714414
33	1	0	3.520502	1.365066	2.272963
34	1	0	1.224701	-0.155692	-1.068755
35	1	0	-6.557085	-2.262555	1.061057
36	1	0	-7.879081	-2.112353	-0.114646
37	1	0	-7.178979	-0.651842	0.612936
38	1	0	-5.697296	-2.577750	-1.269314
39	35	0	5.922614	1.155037	-2.094001

TD-DFT obtained Excitation energies and oscillator strengths:

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.5826 eV 346.07 nm f=0.2862 <S**2>=0.000 100 ->101 0.69434 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -3622.61622360 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 3.7169 eV 333.57 nm f=0.0005 <S**2>=0.000

98 99	->101 ->101		0.66942 0.17724				
Excited 95 97 100 100	State ->101 ->101 ->102 ->104	3:	Singlet-A 0.25759 0.59530 0.15525 0.15523	4.1021 eV	302.25 nm	f=0.0000	<s**2>=0.000</s**2>
Excited 98 99	State ->101 ->101	4:	Singlet-A -0.17623 0.67827	4.1632 eV	297.81 nm	f=0.0004	<s**2>=0.000</s**2>
Excited 95 96 98 100 100	State ->101 ->101 ->105 ->102 ->104	5:	Singlet-A 0.45265 0.43925 0.11315 -0.18756 -0.19689	4.1896 eV	295.93 nm	f=0.0043	<s**2>=0.000</s**2>
Excited 95 96 97 100 100	State ->101 ->101 ->101 ->102 ->104	6:	Singlet-A 0.42523 -0.32578 -0.32399 0.21184 0.19845	4.3783 eV	283.18 nm	f=0.0094	<s**2>=0.000</s**2>
Excited 96 100 100	State ->101 ->102 ->104	7:	Singlet-A 0.14383 0.58150 -0.32689	4.6951 eV	264.07 nm	f=0.0555	<s**2>=0.000</s**2>
Excited 100	State ->103	8:	Singlet-A 0.69414	4.7490 eV	261.07 nm	f=0.0014	<s**2>=0.000</s**2>
Excited 93 94 100 100	State ->101 ->101 ->102 ->105	9:	Singlet-A 0.34176 0.43083 -0.13248 -0.39258	4.8333 eV	256.52 nm	f=0.0171	<s**2>=0.000</s**2>
Excited 93 94 100	State ->101 ->101 ->105	10:	Singlet-A -0.46419 0.50697 0.14006	4.9756 eV	249.18 nm	f=0.0022	<s**2>=0.000</s**2>
Excited 93 94 99 99	State ->103 ->103 ->102 ->104	11:	Singlet-A -0.18609 0.25868 0.58888 -0.16644	5.1245 eV	241.94 nm	f=0.0096	<s**2>=0.000</s**2>
Excited 93 94 97 100	State ->101 ->101 ->101 ->105	12:	Singlet-A 0.36275 0.16759 0.11302 0.51780	5.2151 eV	237.74 nm	f=0.0514	<s**2>=0.000</s**2>
Excited 96 97 100 100 100	State ->101 ->107 ->102 ->104 ->105	13:	Singlet-A 0.35840 -0.12868 0.16231 0.48790 -0.12432	5.3316 eV	232.55 nm	f=0.5527	<s**2>=0.000</s**2>
Excited 98 98 98 99 99	State ->102 ->104 ->105 ->102 ->104	14:	Singlet-A 0.56296 0.33507 -0.17070 0.11664 0.12883	5.4371 eV	228.04 nm	f=0.0008	<s**2>=0.000</s**2>

Excited 95 98 98 99	State ->101 ->104 ->105 ->105	15:	Singlet-A -0.14040 0.28762 0.58386 0.14734	5.4514 eV	227.44 nm	f=0.0003	<s**2>=0.000</s**2>
Excited 92	State ->101	16:	Singlet-A 0.70487	5.5190 eV	224.65 nm	f=0.0020	<s**2>=0.000</s**2>
Excited 98 99 100	State ->106 ->106 ->106	17:	Singlet-A -0.11062 0.58296 0.37818	5.5736 eV	222.45 nm	f=0.0001	<s**2>=0.000</s**2>
Excited 96 96 97 97	State ->104 ->105 ->102 ->104	18:	Singlet-A 0.22218 0.10007 0.59409 0.22394	5.6134 eV	220.87 nm	f=0.0287	<s**2>=0.000</s**2>
Excited 99 100	State ->106 ->106	19:	Singlet-A -0.36899 0.59454	5.6341 eV	220.06 nm	f=0.0003	<s**2>=0.000</s**2>
Excited 98 98 99 99 99	State ->102 ->104 ->102 ->103 ->104	20:	Singlet-A -0.11947 -0.13285 0.22960 -0.12128 0.60819	5.6530 eV	219.33 nm	f=0.0181	<s**2>=0.000</s**2>

7 (Ground state optimised geometry)

Energy = -1256.14453524 a.u.

 Table S5: Coordinates of optimised structure of 4 (GS)

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	6	0	-3.035448	-1.573287	0.081914			
2	6	0	-4.103653	0.617366	-0.432241			
3	6	0	-1.739526	-0.878599	0.266270			
4	6	0	-0.615763	-1.608551	0.610944			
5	6	0	0.627453	-0.976947	0.796350			
6	6	0	0.736005	0.391463	0.627396			
7	6	0	-0.393090	1.189278	0.280160			
8	6	0	-0.326637	2.594913	0.105564			
9	6	0	-1.458809	3.310598	-0.229471			
10	6	0	-2.695616	2.656740	-0.402846			
11	6	0	-2.790145	1.285651	-0.243063			
12	6	0	-1.644124	0.525852	0.101447			
13	6	0	-5.431388	-1.454940	-0.474488			
14	6	0	-6.239535	-1.543124	0.820038			
15	6	0	3.137771	0.559334	0.539534			
16	6	0	4.191986	0.896149	1.395437			
17	6	0	5.482131	0.475765	1.097025			
18	6	0	5.697293	-0.279653	-0.055528			
19	6	0	4.653713	-0.615976	-0.917446			
20	6	0	3.363407	-0.191956	-0.620812			
21	7	0	-4.133370	-0.777222	-0.282436			
22	8	0	-3.160481	-2.781910	0.232401			
23	8	0	-5.119941	1.239958	-0.710867			
24	8	0	1.905766	1.081435	0.860404			
25	8	0	7.215332	-1.399479	-1.392537			

26	1	0	-0.713317	-2.680849	0.744202
27	1	0	-3.591365	3.210535	-0.664016
28	1	0	1.496433	-1.559975	1.081343
29	1	0	0.625066	3.096644	0.241437
30	1	0	-1.399162	4.386792	-0.361256
31	1	0	6.318580	0.717439	1.740920
32	1	0	4.864184	-1.194137	-1.808716
33	1	0	-5.973210	-0.884063	-1.229028
34	1	0	3.983389	1.484376	2.282583
35	1	0	2.540840	-0.434398	-1.284130
36	1	0	-5.694093	-2.110858	1.580117
37	1	0	-7.190090	-2.053758	0.629219
38	1	0	-6.461181	-0.544330	1.208464
39	1	0	-5.209370	-2.450744	-0.858945
40	7	0	7.057692	-0.729169	-0.371798
41	8	0	7.959846	-0.408796	0.402432

7 (1st excited-state optimised geometry)

Energy = -1256.04588332 a.u.

Table S6: Coordinates of optimised structure of 4 (ES)

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Ζ
1	6	0	3.285891	-1.523628	0.004104
2	6	0	4.516617	0.604757	0.268395
3	6	0	2.006466	-0.771779	0.048696
4	6	0	0.785886	-1.479438	-0.066896
5	6	0	-0.426212	-0.827919	-0.033931
6	6	0	-0.474020	0.594149	0.118083
7	6	0	0.764163	1.343483	0.237600
8	6	0	0.783823	2.734811	0.387008
9	6	0	2.004504	3.416480	0.495723
10	6	0	3.214135	2.722272	0.456257
11	6	0	3.215904	1.333113	0.309758
12	6	0	1.995388	0.632119	0.198813
13	6	0	5.748496	-1.527379	0.106912
14	6	0	6.290297	-1.676066	-1.313762
15	6	0	-2.880416	0.650165	0.038789
16	6	0	-3.439497	0.523929	-1.228200
17	6	0	-4.694536	-0.062503	-1.339729
18	6	0	-5.372784	-0.510669	-0.186129
19	6	0	-4.780209	-0.348442	1.084357
20	6	0	-3.525145	0.237416	1.199740
21	7	0	4.464107	-0.786821	0.145737
22	8	0	3.298519	-2.737095	-0.147972
23	8	0	5.579193	1.201331	0.343798
24	8	0	-1.568280	1.287416	0.158770
25	8	0	-7.215118	-1.504699	0.773125
26	1	0	0.833439	-2.556676	-0.182773
27	1	0	4.165771	3.235891	0.537112
28	1	0	-1.356734	-1.370160	-0.121191
29	1	0	-0.153527	3.277947	0.417238
30	1	0	2.004423	4.495108	0.610815
31	1	0	-5.184337	-0.187590	-2.296177
32	1	0	-5.334568	-0.687777	1.949164
33	1	0	6.444198	-0.970518	0.734673
34	1	0	-2.913257	0.884086	-2.107134
35	1	0	-3.064063	0.379093	2.172633
36	1	0	5.591825	-2.234186	-1.944528
37	1	0	7.236367	-2.226414	-1.286211
38	1	0	6.479728	-0.697657	-1.765601
39	1	0	5.557029	-2.501986	0.556393

41	8	0	-7.134146	-1.241425	-1.476727
40	7	0	-6.638716	-1.114893	-0.302295

TD-DFT obtained Excitation energies and oscillator strengths:

Excitation energies and oscillator strengths:

Excited S	State	1:	Singlet-A	3.4009	eV	364.57 n	ım	f=0.3229	<s**2>=0.000</s**2>
This sta	ate for	optimi	zation and/or se	cond-ord	er d	correctic	on.		
Total Er	nergy, E	C(TD-HE	F/TD-KS) = -1256	.0195553	2				
Copying	the exc	cited s	state density for	this st	ate	as the l	-ра	rticle Rho	CI density.
Excited 93	State -> 95	2:	Singlet-A 0.53269	3.6392	eV	340.70	nm	f=0.0064	<s**2>=0.000</s**2>
93 94	-> 96 -> 96		-0.37643 0.23427						
Excited 93 93 94	State -> 95 -> 96 -> 96	3:	Singlet-A -0.19445 0.13671 0.64565	3.6505	eV	339.64	nm	f=0.0682	<s**2>=0.000</s**2>
Excited 87 87 87	State -> 95 -> 96 ->100	4:	Singlet-A 0.50585 0.47213 -0.10967	3.7788	еV	328.10	nm	f=0.0000	<s**2>=0.000</s**2>
Excited 89 92 92 94 94	State -> 95 -> 96 -> 95 -> 96 -> 97 -> 98	5:	Singlet-A 0.22537 -0.16528 0.53324 -0.29341 -0.11584 0.10673	4.0249	eV	308.04	nm	f=0.0005	<\$**2>=0.000
Excited 89 90 90 92 93 94 94	State -> 95 -> 96 -> 95 -> 96 -> 95 -> 99 -> 97 -> 98	6:	Singlet-A 0.36982 -0.26691 0.36572 -0.20978 -0.13233 0.11143 0.17636 -0.15510	4.1204	eV	300.90	nm	f=0.0030	<s**2>=0.000</s**2>
Excited 89 90 90 91 91 92 94 94	State -> 95 -> 96 -> 95 -> 96 -> 95 -> 96 -> 95 -> 95 -> 97 -> 98	7:	Singlet-A -0.24026 0.15915 0.32067 -0.15787 -0.31223 0.10654 0.26669 0.23322 -0.17012	4.2716	eV	290.25	nm	f=0.0457	<s**2>=0.000</s**2>
Excited 85 85 85	State -> 95 -> 96 ->100	8:	Singlet-A 0.50712 0.46998 -0.10499	4.2879	eV	289.15	nm	f=0.0004	<s**2>=0.000</s**2>
Excited 89 89 90 91	State -> 95 -> 96 -> 95 -> 95	9:	Singlet-A -0.23544 0.14225 0.11696 0.57034	4.3766	eV	283.29	nm	f=0.0288	<s**2>=0.000</s**2>

91 92	-> 96 -> 95		-0.16253 0.11012				
Excited 93 93	State -> 95 -> 96	10:	Singlet-A 0.40731 0.56688	4.3956 eV	282.06 nm	f=0.0021	<s**2>=0.000</s**2>
Excited 90 90 92 92	State -> 95 -> 96 -> 95 -> 96	11:	Singlet-A -0.13912 -0.17381 0.29521 0.58395	4.4629 eV	277.81 nm	f=0.0195	<s**2>=0.000</s**2>
Excited 88 90 91 91 92 94 94	State -> 95 -> 96 -> 96 -> 97 -> 96 -> 97 -> 98	12:	Singlet-A 0.46814 0.24218 -0.14610 0.26381 -0.14331 -0.12426 -0.17299 -0.19443	4.5606 eV	271.86 nm	f=0.0340	<\$**2>=0.000
Excited 88 90 90 91 91 91	State -> 95 -> 96 -> 95 -> 96 -> 95 -> 96 -> 97	13:	Singlet-A -0.22502 -0.10579 -0.11678 -0.10600 0.18488 0.57307 0.15015	4.6031 eV	269.35 nm	f=0.1942	<\$**2>=0.000
Excited 90 90 91 92 94	State -> 95 -> 96 -> 96 -> 96 -> 97	14:	Singlet-A 0.37035 0.49264 0.18827 0.18685 -0.16319	4.6582 eV	266.16 nm	f=0.0033	<\$**2>=0.000
Excited 88 90 94 94	State -> 95 -> 96 -> 97 -> 98	15:	Singlet-A 0.33383 0.16252 0.49860 0.30639	4.8267 eV	256.87 nm	f=0.0546	<s**2>=0.000</s**2>
Excited 86 86 88 94	State -> 95 -> 96 -> 96 -> 99	16:	Singlet-A -0.39981 0.19498 -0.18206 0.49459	4.8956 eV	253.26 nm	f=0.0126	<s**2>=0.000</s**2>
Excited 89 89	State -> 95 -> 96	17:	Singlet-A 0.41160 0.55981	4.9198 eV	252.01 nm	f=0.0008	<s**2>=0.000</s**2>
Excited 86 88 88 94	State -> 95 -> 95 -> 96 -> 99	18:	Singlet-A -0.12858 -0.26614 0.59868 0.13600	4.9514 eV	250.40 nm	f=0.0017	<s**2>=0.000</s**2>
Excited 87 87	State -> 95 -> 96	19:	Singlet-A -0.48432 0.50647	5.1525 eV	240.63 nm	f=0.0006	<s**2>=0.000</s**2>
Excited 86 90 90 92 94	State -> 95 -> 95 -> 96 ->101 -> 98	20:	Singlet-A 0.48503 0.10087 -0.12370 -0.10197 0.22205	5.2226 eV	237.40 nm	f=0.0934	<s**2>=0.000</s**2>

94 -> 99 0.35708