Supporting Information for

Hydrophobic dipeptide crystals: a promising Ag-free class of ultramicroporous materials showing argon/oxygen adsorption selectivity

Rui Afonso^{†,‡}, Adélio Mendes[†] and Luís Gales^{‡, §, *}

[†]LEPABE – Faculdade de Engenharia, Universidade do Porto, Rua Dr.

Roberto Frias, 4200-465 Porto, Portugal

[‡]IBMC—Institute for Molecular and Cell Biology, Rua do Campo Alegre 823,

4150-180 Porto, Portugal.

§Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira

228, 4050-313 Porto, Portugal

* Correspondin author. Tel.

Email address: lgales@ibmc.up.pt

Excess Adsorption Data

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16510	0.00476	0.16925	0.00826	0.17750	0.01137
0.50695	0.01466	0.46455	0.02286	0.44705	0.02871
0.81425	0.02355	1.23095	0.05925	0.90025	0.05664
1.81380	0.05113	2.27120	0.10578	2.05805	0.12388
3.09950	0.08570	3.33520	0.14963	3.19380	0.18329
4.34980	0.11540	4.40800	0.19088	4.33810	0.23897
5.71800	0.14616	5.46010	0.23143	5.48840	0.29021

Table S1. Excess adsorption data of N $_2,\,O_2$ and Ar, in VI, at 5 °C.

Table S2. Excess adsorption data of N $_2,\,O_2$ and Ar, in IA, at 5 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16245	0.00614	0.16600	0.01003	0.16605	0.01128
0.50025	0.01952	0.46610	0.02895	0.46815	0.03203
0.81410	0.03222	1.23460	0.07516	1.23485	0.08207
1.80980	0.06901	2.26705	0.13299	2.22630	0.14426
3.12210	0.11622	3.36080	0.19194	3.34065	0.20948
4.33470	0.15712	4.40370	0.24282	4.40005	0.26696
5.69235	0.19790	5.46590	0.29066	5.46715	0.31900

N ₂ C		O ₂		Ar	
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
1.236575	0.06919	1.197925	0.09949	1.135380	0.10963
2.711740	0.14335	2.643270	0.20472	2.467635	0.22065
4.190250	0.21043	3.252615	0.24481	3.832200	0.31849
		4.174085	0.30144		

Table S3. Excess adsorption data of N_2 , O_2 and Ar, in IV, at 5 °C.

Table S4. Excess adsorption data of N_2 , O_2 and Ar, in VV, at 5 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16145	0.01148	0.16065	0.01302	0.16310	0.01570
0.49685	0.03586	0.46545	0.03840	0.46485	0.04500
0.81245	0.05777	1.23520	0.09792	1.23340	0.11329
1.80800	0.12083	2.26765	0.17165	2.26650	0.19774
3.09710	0.19549	3.33775	0.24008	3.33670	0.27517
4.33860	0.25859	4.39855	0.30255	4.39670	0.34509
5.69340	0.31898	5.46215	0.36145	5.46570	0.40821

	N ₂	O ₂			Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16890	0.00355	0.16390	0.00582	0.17665	0.00827
0.50090	0.01092	0.46660	0.01697	0.44650	0.02099
0.81445	0.01768	1.23150	0.04394	0.89850	0.04148
1.81030	0.03798	2.27065	0.07929	2.05580	0.09225
3.09765	0.06466	3.33550	0.11312	3.19300	0.13822
4.34370	0.08957	4.40360	0.14567	4.33940	0.18197
5.71600	0.11539	5.47050	0.17667	5.48900	0.22311

Table S5. Excess adsorption data of N_2 , O_2 and Ar, in VI, at 20 °C.

Table S6. Excess adsorption data of N_2 , O_2 and Ar, in IA, at 20 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16165	0.00421	0.16665	0.00746	0.16110	0.00831
0.49715	0.01396	0.46460	0.02108	0.46420	0.02412
0.81305	0.02309	1.23210	0.05426	1.23280	0.06176
1.80660	0.05058	2.26450	0.09757	2.26550	0.11211
3.09200	0.08680	3.33500	0.14099	3.33780	0.15957
4.33740	0.11983	4.40070	0.18234	4.39780	0.20517
5.70440	0.15311	5.46595	0.22109	5.46550	0.24957

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.424140	0.01725	1.215075	0.07165	1.201995	0.08657
1.718925	0.06768	2.703170	0.15121	2.647605	0.17930
3.187710	0.12031	4.172250	0.22220	4.069070	0.26061
4.853850	0.17511				

Table S7. Excess adsorption data of N_2 , O_2 and Ar, in IV, at 20 °C.

Table S8. Excess adsorption data of N_2 , O_2 and Ar, in VV, at 20 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.1614	0.00856	0.16115	0.01012	0.16885	0.01271
0.49665	0.02680	0.4651	0.02925	0.4648	0.03427
0.81255	0.04335	1.2329	0.07550	1.231	0.08691
1.8071	0.09341	2.2667	0.13394	2.2662	0.15428
3.0914	0.15459	3.3359	0.18966	3.33575	0.21786
4.3383	0.20794	4.3988	0.24234	4.3971	0.27694
5.694	0.26029	5.465	0.29092	5.46545	0.33123

	N ₂		O ₂	Ar	
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16630	0.00261	0.16805	0.00459	0.18690	0.00642
0.50060	0.00836	0.46650	0.01295	0.44760	0.01547
0.82100	0.01360	1.23370	0.03348	0.91385	0.03128
1.80920	0.02971	2.27040	0.06042	2.05205	0.06914
3.10940	0.05042	3.33590	0.08677	3.19230	0.10481
4.34440	0.06953	4.40630	0.11278	4.33290	0.13917
5.71700	0.08981	5.47010	0.13742	5.50225	0.17281

Table S9. Excess adsorption data of N_2 , O_2 and Ar, in VI, at 35 °C.

Table S10. Excess adsorption data of $N_2,\,O_2$ and Ar, in IA, at 35 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.15825	0.00326	0.16180	0.00520	0.16410	0.00609
0.49605	0.01102	0.46520	0.01539	0.46450	0.01768
0.81370	0.01769	1.23185	0.04032	1.23030	0.04581
1.80755	0.03859	2.26570	0.07537	2.26690	0.08306
3.09395	0.06659	3.36050	0.10815	3.33720	0.11944
4.33670	0.09175	4.40550	0.14118	4.39845	0.15514
5.70400	0.11815	5.47560	0.17227	5.46555	0.18869

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
1.255430	0.03623	1.232690	0.05261	1.216250	0.06667
2.721895	0.07620	2.685640	0.11030	2.590125	0.13595
4.191800	0.11404	4.182265	0.16527	3.987230	0.20072

Table S11. Excess adsorption data of N_2 , O_2 and Ar, in IV, at 35 °C.

Table S12. Excess adsorption data of $N_2,\,O_2$ and Ar, in VV, at 35 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16195	0.00621	0.16320	0.00758	0.16740	0.00966
0.49630	0.02076	0.46430	0.02204	0.46480	0.02646
0.81360	0.03312	1.23310	0.05707	1.23695	0.06733
1.80240	0.07087	2.26660	0.10258	2.26580	0.11930
3.09090	0.11812	3.33460	0.14575	3.33880	0.16919
4.33865	0.16049	4.39810	0.18755	4.39560	0.21625
5.69555	0.20298	5.46360	0.22726	5.46300	0.26023

Absolute adsorption results

Absolute adsorption was calculated like the excess adsorption, except for the substitution of real density for apparent density in the calculation. Apparent density calculated from the experimentally determined real density and the crystallographic porosity [1].

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16510	0.00506	0.16925	0.00857	0.17750	0.01169
0.50695	0.01558	0.46455	0.023702	0.44705	0.02952
0.81425	0.02503	1.23095	0.06149	0.90025	0.05829
1.81380	0.05444	2.27120	0.10993	2.05805	0.12764
3.09950	0.09136	3.33520	0.15574	3.19380	0.18913
4.34980	0.12335	4.40800	0.19896	4.33810	0.24692
5.71800	0.15663	5.46010	0.24145	5.48840	0.30028

Table S13. Absolute adsorption results of N₂, O₂ and Ar, in VI, at 5 °C.

Table S14. Absolute adsorption results of N $_2$, O $_2$ and Ar, in IA, at 5 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16245	0.00644	0.16600	0.01033	0.16605	0.01158
0.50025	0.02043	0.46610	0.02980	0.46815	0.03288
0.81410	0.03370	1.23460	0.07741	1.23485	0.08432
1.80980	0.07230	2.26705	0.13712	2.22630	0.14832
3.12210	0.12191	3.36080	0.19808	3.34065	0.21558
4.33470	0.16502	4.40370	0.25086	4.40005	0.27500
5.69235	0.20828	5.46590	0.30066	5.46715	0.32900

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
1.236575	0.07218	1.197925	0.10239	1.135380	0.11223
2.711740	0.14991	2.643270	0.21112	2.467635	0.22631
4.190250	0.22058	3.252615	0.25269	3.832200	0.32731
		4.174085	0.31156		

Table S15. Absolute adsorption results of N $_2$, O $_2$ and Ar, in IV, at 5 °C.

Table S16. Absolute adsorption results of N $_2$, O $_2$ and Ar, in VV, at 5 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16140	0.01196	0.16065	0.01349	0.16310	0.01618
0.49685	0.03733	0.46545	0.03978	0.46485	0.04638
0.81245	0.06017	1.23520	0.10157	1.23340	0.11694
1.80800	0.12618	2.26765	0.17837	2.26650	0.20446
3.09710	0.20467	3.33775	0.24999	3.33670	0.28507
4.33860	0.27146	4.39855	0.31563	4.39670	0.35816
5.69340	0.33588	5.46215	0.37771	5.46570	0.42447

Table S17. Absolute adsorption results of N2, O2 and Ar, in VI, at 20 $^{\circ}\text{C}.$

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16890	0.00384	0.16390	0.00610	0.17665	0.00857
0.50090	0.01178	0.46660	0.01778	0.44650	0.02176
0.81445	0.01909	1.23150	0.04607	0.89850	0.04304
1.81030	0.04111	2.27065	0.08322	2.05580	0.09581
3.09765	0.07003	3.33550	0.11890	3.19300	0.14376
4.34370	0.09710	4.40360	0.15332	4.33940	0.18951
5.71600	0.12531	5.47050	0.18618	5.48900	0.23266

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16165	0.00449	0.16665	0.00775	0.16110	0.00859
0.49715	0.01481	0.46460	0.02188	0.46420	0.02492
0.81305	0.02449	1.23210	0.05638	1.23280	0.06389
1.80660	0.05370	2.26450	0.10148	2.26550	0.11602
3.09200	0.09214	3.33500	0.14676	3.33780	0.16535
4.33740	0.12732	4.40070	0.18996	4.39780	0.21279
5.70440	0.16298	5.46595	0.23056	5.46550	0.25905

Table S18. Absolute adsorption results of N_2 , O_2 and Ar, in IA, at 20 °C.

Table S19. Absolute adsorption results of N $_2$, O $_2$ and Ar, in IV, at 20 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.424140	0.01823	1.215075	0.07443	1.201995	0.08932
1.718925	0.07162	2.703170	0.15742	2.647605	0.18538
3.187710	0.12761	4.172250	0.23180	4.069070	0.26996
4.853850	0.18625				

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16140	0.00894	0.16115	0.01050	0.16885	0.01310
0.49665	0.02796	0.46510	0.03034	0.46480	0.03536
0.81255	0.04525	1.23290	0.07839	1.23100	0.08980
1.80710	0.09765	2.26670	0.13926	2.26620	0.15960
3.09140	0.16185	3.33590	0.19750	3.33575	0.22570
4.33830	0.21813	4.39880	0.25269	4.39710	0.28729
5.69400	0.27367	5.46500	0.30379	5.46545	0.34411

Table S20. Absolute adsorption results of N_2 , O_2 and Ar, in VV, at 20 °C.

Table S21. Absolute adsorption results of N $_2$, O $_2$ and Ar, in VI, at 35 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16630	0.00288	0.16805	0.00486	0.18690	0.00672
0.50060	0.00918	0.46650	0.01372	0.44760	0.01620
0.82100	0.01495	1.23370	0.03551	0.91385	0.03278
1.80920	0.03268	2.27040	0.06416	2.05205	0.07252
3.10940	0.05554	3.33590	0.09227	3.19230	0.11008
4.34440	0.07669	4.40630	0.12006	4.33290	0.14632
5.71700	0.09924	5.47010	0.14646	5.50225	0.18190

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.15825	0.00352	0.16180	0.00546	0.16410	0.00636
0.49605	0.01227	0.46520	0.01615	0.46450	0.01844
0.81370	0.01983	1.23185	0.04234	1.23030	0.04782
1.80755	0.04362	2.26570	0.07909	2.26690	0.08679
3.09395	0.07544	3.36050	0.11368	3.33720	0.12493
4.33670	0.10419	4.40550	0.14843	4.39845	0.16238
5.70400	0.13451	5.47560	0.18129	5.46555	0.19770

Table S22. Absolute adsorption results of N $_2$, O $_2$ and Ar, in IA, at 35 °C.

Table S23. Absolute adsorption results of N $_2$, O $_2$ and Ar, in IV, at 35 °C.

	N ₂		O ₂		O ₂ Ar		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹		
0	0	0	0	0	0		
1.255430	0.03897	1.232690	0.05530	1.216250	0.06946		
2.721895	0.08213	2.685640	0.11617	2.590125	0.14189		
4.191800	0.12318	4.182265	0.17441	3.987230	0.20988		

Table S24. Absolute adsorption results of N $_2,\,O_2$ and Ar, in VV, at 35 °C.

	N ₂		O ₂		Ar
P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹	P / bar	n / mol.kg ⁻¹
0	0	0	0	0	0
0.16195	0.00665	0.16320	0.00801	0.16740	0.01010
0.49630	0.02209	0.46430	0.02328	0.46480	0.02771
0.81360	0.03529	1.23310	0.06037	1.23695	0.07063
1.80240	0.07569	2.26660	0.10865	2.26580	0.12536
3.09090	0.12638	3.33460	0.15468	3.33880	0.17813
4.33865	0.17209	4.39810	0.19933	4.39560	0.22802
5.69555	0.21821	5.46360	0.24191	5.46300	0.27488

Fitting results

	n _{max} / mol.kg ⁻		b / bar ⁻¹	
	1	5 °C	20 °C	35 °C
VI	2.54736	0.012297	0.0094729	0.0073619
IA	3.36315	0.012455	0.0093799	0.0075898
IV	2.99153	0.020315	0.014409	0.010501
VV	2.92024	0.026118	0.020331	0.015339

Table S25. Fitting parameters determined for N₂, in VI, IA, IV and VV, at 5 °C, 20 °C and 35 °C.

Table S26. Minimised sum of the squares for N₂, in VI, IA, IV and VV, at 5 °C, 20 °C and 35 °C.

	VI	IA	IV	VV
5 °C	1.734 X 10 ⁻⁶	2.389 X 10 ⁻⁶	7.575 X 10 ⁻⁶	3.146 X 10 ⁻⁶
20 °C	2.334 X 10 ⁻⁶	4.079 X 10 ⁻⁶	9.196 X 10 ⁻⁶	4.795 X 10⁻ ⁶
35 °C	4.129 X 10 ⁻⁷	2.727 X 10 ⁻⁶	5.995 X 10 ⁻⁶	1.421 X 10⁻ ⁶
Total	4.481 X 10 ⁻⁶	9.195 X 10 ⁻⁶	2.277 X 10 ⁻⁵	9.363 X 10 ⁻⁶
20 °C 35 °C Total	2.334 X 10 ⁻⁶ 4.129 X 10 ⁻⁷ 4.481 X 10 ⁻⁶	4.079 X 10 ⁻⁶ 2.727 X 10 ⁻⁶ 9.195 X 10 ⁻⁶	9.196 X 10 ⁻⁶ 5.995 X 10 ⁻⁶ 2.277 X 10 ⁻⁵	4.795 X 10 ⁻⁶ 1.421 X 10 ⁻⁶ 9.363 X 10 ⁻⁶

Table S27. Fitting parameters determined for O_2 , in VI, IA, IV and VV, at 5 °C, 20 °C and 35 °C.

	n _{max} / mol.kg ⁻		b / bar⁻¹	
	1	5 °C	20 °C	35 °C
VI	3.18554	0.016245	0.012081	0.0092383
IA	3.91143	0.016633	0.012179	0.0092791
IV	3.36954	0.026821	0.018863	0.013610
VV	3.61289	0.024010	0.018580	0.014082

	VI	IA	IV	VV
5 °C	1.806 X 10 ⁻⁶	3.162 X 10 ⁻⁶	5.385 X 10 ⁻⁶	1.419 X 10 ⁻⁶
20 °C	1.708 X 10 ⁻⁷	1.375 X 10 ⁻⁶	6.597 X 10 ⁻⁶	4.908 X 10 ⁻⁷
35 °C	8.774 X 10 ⁻⁸	4.524 X 10⁻ ⁶	6.073 X 10 ⁻⁶	7.004 X 10 ⁻⁷
Total	2.065 X 10 ⁻⁶	9.060 X 10 ⁻⁶	1.805 X 10 ⁻⁵	2.610 X 10 ⁻⁶

Table S28. Minimised sum of the squares for O_2 , in VI, IA, IV and VV, at 5 °C, 20 °C and 35 °C.

Table S29. Fitting parameters determined for Ar, in VI, IA, IV and VV, at 5 °C, 20 °C and 35 °C.

	n _{max} / mol.kg⁻		b / bar⁻¹	
	1	5 °C	20 °C	35 °C
VI	3.17554	0.021140	0.015584	0.011701
IA	4.04617	0.017754	0.013366	0.0098906
IV	3.31336	0.031719	0.023587	0.017922
VV	3.52994	0.028729	0.022153	0.016819

Table S30. Minimised sum of the squares for Ar, in VI, IA, IV and VV, at 5 °C, 20 °C and 35 °C.

	VI	IA	IV	VV
5 °C	4.353 X 10 ⁻⁷	3.145 X 10 ⁻⁶	5.820 X 10 ⁻⁶	1.331 X 10 ⁻⁶
20 °C	1.451 X 10 ⁻⁶	1.413 X 10 ⁻⁶	6.493 X 10 ⁻⁶	2.427 X 10 ⁻⁶
35 °C	1.363 X 10 ⁻⁶	3.735 X 10 ⁻⁷	6.373 X 10 ⁻⁶	5.604 X 10 ⁻⁷
Total	3.250 X 10⁻ ⁶	4.931 X 10 ⁻⁶	1.869 X 10 ⁻⁵	4.318 X 10 ⁻⁶

Figure S1. Excess adsorption isotherms of Ar, O_2 and N_2 on VI, IA, IV and VV, at 5 °C, grouped per material.

Figure S2. Excess adsorption isotherms of Ar, O_2 and N_2 on VI, IA, IV and VV, at 35 °C, grouped per material.

Figure S3. Excess adsorption isotherms of Ar, O_2 and N_2 on VI, IA, IV and VV, at 20 °C, grouped per gas.

Figure S4. Variation of Ar/O₂ and O₂/N₂ selectivities with pressure, for IA, at 5 °C, 20 °C and 35 °C.

Figure S5. Variation of Ar/O₂ and O₂/N₂ selectivities with pressure, for IV, at 5 °C, 20 °C and 35 °C.

Figure S6. Variation of Ar/O_2 and O_2/N_2 selectivities with pressure, for VV, at 5 °C, 20 °C and 35 °C.

Bibliography

[1] D.V. Soldatov, I.L. Moudrakovski, E.V. Grachev, J.A. Ripmeester, Micropores in Crystalline Dipeptides as Seen from the Crystal Structure, He Pycnometry, and 129Xe NMR Spectroscopy, J. Am. Chem. Soc., 128 (2006) 6737-6744.