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1 Analysis on Band Folding

The primitive cell area of GALs is (m1m2+m1n2+n1n2) times as big as that of graphene, and the first Brillouin
zone area of GALs is 1/(m1m2+m1n2+n1n2) times as big as that of graphene, which means the band have been
folded. The bandgap of graphene is closed at K0

1 and K0
2 points. We deduce the locations of the K0

1 and K0
2

in reciprocal space of GALs after band folding. For graphene, the basis vectors are written as {a1,a2} and the
reciprocal basis vectors are denoted by {b1,b2}. For GALs, the basis vectors and the reciprocal basis vectors
are written as {A1,A2} and {B1,B2}, respectively. The relationship between {A1,A2} and {a1,a2} is given by
Eq.(1):

{
A1 = m1a1 +n1a2
A2 =−n2a1 +(m2 +n2)a2

(S1)

If we assume:

{
B1 = x1b1 + y1b2
B2 = x2b1 + y2b2

(S2)

And there exists:

{
ai ·b j=2πδij
Ai ·B j=2πδij

(S3)

Then Eqns. (S1)(S2)(S3) are solved for {x1,y1,x2,y2} and substituted in Eq. (S2), which yields:

{
B1 =

(m2+n2)b1+n2b2
m1m2+m1n2+n1n2

B2 =
−n1b1+m1b2

m1m2+m1n2+n1n2

(S4)

Through Eq. (S4), the k-points (k1,k2) corresponding to k1b1+k2b2 can converted into (K1,K2) correspond-
ing to K1B1 +K2B2. This conversion is written as:

{
K1 = m1k1 +n1k2
K2 =−n2k1 +(m2 +n2)k2

(S5)

Coordinates (K1,K2) given by Eq. (S5) are lying out of the first Brillouin zone, which can translocate to
some equivalent positions in reciprocal space according to Bloch’s theorem. Coordinates (K1,K2) of the K0

1
andK0

2given by Eq. (S5) are written as Eq. (S6) and Eq. (S7), respectively:
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According to reciprocal space translation symmetry, let the locations after band folding be kept in area
of Λ1B1+Λ2B2 (Λ1,Λ2 ∈[0,1)), then a unique coordinate (Λ1,Λ2) will be got from (K1,K2) with Eq. (S8) be
satisfied:

K1−Λ1,K2−Λ2 ∈ Z (S8)

Locations of the K0
1 and K0

2, mapped to Λ1B1+Λ2B2 (Λ1,Λ2 ∈[0,1)) area, can be solved from Eqns. (S6)(S7)(S8).
K0

1 and K0
2 of {[m,n],[m,n]} and {[m,m],[0,n]} after band folding are expressed in Table S1.
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Table S1 Locations of the K0
1 and K0

2 in {[m,n],[m,n]} and {[m,m],[0,n]} after band folding.

Conditions K0
1 (Λ1,Λ2) K0

2 (Λ1,Λ2)

{[m,n],[m,n]}
m−n=3l Γ Γ

m−n=3l+1 K1 K2
m−n=3l+2 K2 K1

{[m,m],[0,n]}
n=3l Γ Γ

n=3l+1 (0,1/3) (0,2/3)
n=3l+2 (0,2/3) (0,1/3)

2 Models and Methods

Based on density functional theory (DFT) methods and semi-empirical (SE) methods, the electronic structure
calculations are performed with the ab initio code package, Atomistix ToolKit (ATK). The generalized gradient
approximation (GGA) and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation function are chosen on
DFT calculations, with a SingleZetaPolarized basis set, to expanding the wavefunctions. The mesh cutoff of
carbon atoms is 150 Rydberg and the tolerance of total energy is 10−6 Hartree. The non-self-consistent extended
Hückel tight-binding model in SE is chosen to deal with GALs involving large number of atoms, with Cerda
graphite basis set for carbon and default Hoffmann set for hydrogen. Periodic boundary conditions are used for
all calculations, and Brillouin-zone integrations are performed using a 11×11×1 Monkhorst-Pack (MP) grid.
Each graphene plane is separated by 30 Å of vacuum to avoid the effect of layers. Our work shows reasonable
agreement between DFT and SE calculations on considering the rule of bandgap opening/closing.

To clarify the underlying mechanism of the bandgap opening/closing, we consider the four states, namely
ψ1↑, ψ2↑, ψ1↓, ψ2↓, at Fermi energy of graphene, where 1, 2 represent the different dirac valleys and ↑, ↓
represent the different pseudo-spins. These four states are stable and orthogonal in graphene. However, in
GALs, they are no longer orthogonal and stable because of antidots. That is, the wave functions will overlap or
change themselves, resulting in energy splitting.

In graphene antidot lattices with zigzag-edged hexagonal holes, if ignored the coupling of valleys state
and pseudo-spin states, we can draw a concise and lucid explanation to calculation results of bandgaps. That
means the system of four states could be simplified from |1,2,↑,↓〉 to |1,2〉⊗ |↑,↓〉. In Section 2.3, we build
models to analyze how the intervalley scattering effect the restructuring of ψ1 and ψ2, and revealed that the
bandgap opening mainly results from the intervalley scattering. In addition, energy splitting of ψ↑ and ψ↓ is
also discussed, which is attributed to broken symmetry of the pseudo-spin. Other interactions, for example,
whether the wave functions of ψ↑ and ψ↓ overlap or not,are neglected in our analysis.

Fig. S1 Band structures and tetrahedron density of states of (a) ZHS-GALs {[3,3],[0,5] R=1 } and (b) ZHS-GALs
{[5,3],[3,6] R=2 }.



3 Simplified k-point Paths

Two systems where band gaps close at non-high-symmetry points are given as examples to illustrate how to
choose proper simplified k-point paths to characterize the electronic structure. According to Table 1, [r1,r2] is
[0,1] for ZHS-GALs {[3,3],[0,5] R=1 }, and [2,0] for ZHS-GALs {[5,3],[3,6] R=2 }. So, the K0

1 and K0
2 points

after band folding are (0,1/3) , (0,2/3) for the former one, and (1/3,0) , (2/3,0) the latter one. DFT results are
shown in Fig. S1. The energy interval is set to 0.001 eV when calculate density of states (DOS). The following
result illustrated that the simplified k-point path Γ→ K0

1 → K0
2 is a proper one.

For ZHS-GALs {[3,3],[0,5] R=1 }, the bandgap from band calculations would be 0.004 eV with 29 points
between (0,1/3) and (0,2/3), and 0.001 eV with 89 points. Under k-point density of 80 points per Å−1 (
Monkhorst-Pack grid size being 40×42×1), the gaussian DOS with smearing of 0.005 eV showed a bandgap
of 0.015 eV, smearing of 0.001 eV showed 0.053 eV, and the tetrahedron DOS showed 0.062 ev. In this case,
the bandgap should be treated as 0 from band calculations. And the DOS calculations require great amount of
k-points to get an accurate bandgap.

For ZHS-GALs {[5,3],[3,6] R=2 }, the bandgap from band calculations would be 0.053 eV with 29 or 89
points between (1/3,0) and (2/3,0). Under k-point density of 80 points per Å−1 ( Monkhorst-Pack grid size being
30×27×1), the gaussian DOS with smearing of 0.005 eV showed a bandgap of 0.006 eV, smearing of 0.001
eV showed 0.047 eV, and the tetrahedron DOS showed 0.054 eV. In this case, the bandgap is underestimating
through gaussian DOS, and tetrahedron DOS result is consistent with the band calculations with simplified
k-point paths.


