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Figure S1. X-ray diffraction patterns of SnTe1-xIx, SnTe1+y, and GdzSn1-zTe samples with no 

impurities observed. (a) SnTe, (b) SnTe0.985I0.015, (c) Gd0.01Sn0.99Te, (d) SnTe1.015. 

 

 Table S1 A list of samples and some of their room temperature transport properties at 300 K. 

Label Composition pH(10
19

cm
-3

) H(cm
2
/Vs) (V/K) 

1E20(SnTe) SnTe 1.13E20 487 8 

1.3E20(0.25% I) SnTe0.9975I0.0025 1.3E20 392 9 

9E19(0.5% I) SnTe0.995I0.005 9.2E19 558 8 

1.1E20(0.75% I) SnTe0.9925I0.0075 1.1E20 390 11 

6E19(1.0% I) SnTe0.99I0.01 6.1E19 545 12 

6.3E19(1.25% I) SnTe0.9875I0.0125 6.3E19 430 20 

4E19(1.5% I) SnTe0.985I0.015 3.8E19 740 27 

3.1E19(2.0% I) SnTe0.98I0.02 3.1E19 460 29 

1.3E20(0.3% Te) SnTe1.003 1.3E20 393 10 

2E20(0.5% Te) SnTe1.005 2.5E20 222 11 

6E20(1.5% Te) SnTe1.015 6.4E20 87 29 

1.7E20(0.25% Gd) Gd0.0025Sn0.9975Te 1.66E20 234 8 

3E20(0.5% Gd) Gd0.005Sn0.995Te 3.36E20 109 10 

4E20(1.0% Gd) Gd0.01Sn0.99Te 3.72E20 89 14 

4.4E20(1.5% Gd) Gd0.015Sn0.985Te 4.42E20 72 16 

5.0E20(2.0% Gd) Gd0.02Sn0.98Te 4.96E20 61 17 

 

Two-band-modeling details. 

It has been found that the minimum of the band gap of SnTe is in the L point of the first 

Brillouin zone and that there is a second valence band near the first one on the  axis
1, 2

. In this 

paper it was assumed that the light band is nonparabolic and the heavy band is parabolic. 

Two-band model (SKB modeling for light band and SPB modeling for the heavy band) is applied 

to explain thermoelectric transport properties. 

We consider the Seebeck coefficient of a semiconductor whose electrical conductivity is due 

entirely to holes which are distributed between two nondegenerate valence bands. It is shown that 



the Seebeck coefficient can increase to a maximum with increasing Hall carrier concentration, 

although the Seebeck coefficient associated with each band decreases in the usual manner with 

increasing carrier concentration. 

The Seebeck coefficient and electrical conductivity of a two band semiconductor are given by: 

S=(SLL+SHH)/(L+H), 

= L+H = pLLe+pHHe, 

Where the subscripts L and H refer to the light-mass valence band and heavy-mass valence band, 

respectively. And p is the hole concentration,  is the hole mobility, e is the electron charge. For 

simplicity, we used the rigid band approximation which assumes that the changing carrier 

concentration adjusts only the chemical potential position and not the shape or position of the 

bands.  

  Within the Kane model, the transport parameters of light band are expressed as follows: 

  The Seebeck coefficient L of light-mass valence band: 

𝑆𝐿 =
𝜅𝐵
𝑒
[
F1 −2
1

F0 −2
1 − η] 

Where  is the reduced chemical potential =u/BT, B is the Boltzmann constant, e is the 

electron charge. 

  The carrier concentration pLof light-mass valence band: 

𝑝𝐿 =
(2𝑚∗𝜅𝐵𝑇)

3/2

3𝜋2ℏ3
𝐹0
3/20  

Where m
*
 is the density of state effective mass taking into account band degeneracy, ħ is the 

reduced Plank’s constant, T is the absolute temperature. 

The mobility L of light-mass valence band: 

μ𝐿 =
2𝜋ℏ4𝑒𝐶𝑙

𝑚Ⅰ
∗ (2𝑚𝑏

∗𝜅𝐵𝑇)3/2Edef
2

3 𝐹−2
10

𝐹0
3/20

 

Where Cl (Cl =5.8210
10

 Pa for SnTe
3
) is a parameter determined by the combination of the elastic 

constant (Cl =ʋl
2
 d, where ʋl is the longitudinal speed of sound, d is the density), Edef is a 

combination of deformation potentials for multivalley systems
4, 5

, which describes the carrier 

scattering strength by acoustic phonons. 

  The Hall factor ALof light-mass valence band (p=ALpH=AL/eRHL): 

𝐴𝐿 =
3𝐾(𝐾 + 2)

(2𝐾 + 1)2
𝐹0 −4
1/2

𝐹0
3/20

( 𝐹−2
10 )2

 

K=m∥
*
/m⊥

*
 (K=4, assumed T independent

3
). Due to the anisotropy of both conduction and valence 

bands at the L point, the inertial effective mass mI
*
, and the density of states effective mass m

*
 are 

governed by the effective band mass of a single pocket along two directions m∥
*
 and m⊥

*
:  

𝑚𝐼
∗ = 3(

2

𝑚⊥
∗ +

1

𝑚∥
∗)
−1, 𝑚∗ = 𝑁𝑉

2/3
𝑚𝑏

∗ = 𝑁𝑉
2/3

(𝑚⊥
∗2𝑚∥

∗)1/3. 

Where NV is the band degeneracy (NV1=4 for the light-mass valence band, NV2=12 for the 

heavy-mass valence band of SnTe
6
). 

And the Lorenz number LL of light-mass valence band: 

𝐿𝐿 = (
𝜅𝐵
𝑒
)
2

[
𝐹−2
12

𝐹−2
10 − (

𝐹−2
11

𝐹−2
10 )

2

] 



 In the equations above the integral 
n
Fl

m
 is defined by 

𝐹𝑙
𝑚 = ∫ (−

𝜕𝑓

𝜕𝜀
) 𝜀𝑛(𝜀 + 𝛼𝜀2)𝑚[(1 + 2𝛼𝜀)2 + 2]𝑙/2𝑑𝜀

∞

0

𝑛  

Within the single parabolic model, the transport parameters of heavy-mass valence band are 

expressed as follows: 

𝑆𝐻 =
𝜅

𝑒
[
2𝐹1
𝐹0

− (𝜂 − Δ)] 

Where F0 and F1 are Fermi integrals and  is the reduced energy difference between the bottoms 

of the two bands, 

Δ = 𝐸𝑉/𝜅𝑇 

The carrier concentration pH of the heavy-mass valence band: 

𝑝𝐻 = 4𝜋 (
2𝑚∗𝜅𝑇

ℎ2
)
3/2

𝐹1/2(𝜂 − Δ) 

The mobility H of the heavy-mass valence band: 

𝜇𝐻 = 𝜇0
𝐹−1/2

2𝐹0
 

The Hall factor AH (p=AHpH=AH/eRHH) of the heavy-mass valence band: 

𝐴𝐻 =
3

2
𝐹1/2

𝐹−1/2

2𝐹0
2  

And the Lorenz number L H of the heavy-mass valence band: 

𝐿𝐻 =
𝜅2

𝑒2
3𝐹0𝐹2 − 4𝐹1

2

𝐹0
2  

 According to the two band model, the carrier concentration p: 

p = 𝑝𝐿 + 𝑝𝐻 

 The Hall coefficient RH: 

𝑅𝐻 =
𝜎𝐿
2𝑅𝐻𝐿 + 𝜎𝐻

2𝑅𝐻𝐻
(𝜎𝐿 + 𝜎𝐻)2

 

The Hall mobility H: 

μH = 𝑅𝐻𝜎 

The effective mass and deformation potential were fit for the light band first, using low carrier 

concentration results, and then the heavy band parameters were adjusted. We allowed the effective 

mass for the light and heavy band and the band offset to vary as a function of temperature such 

that we obtained the best fit to experimental data. In this work, the number of degenerate valleys 

was assumed to be 4 and 12 for light and heavy bands respectively following similar results from 

PbTe
7
. Lattice thermal conductivity was calculated using the 2-band Lorenz number for the Iodine 

doped samples which gave consistent results among the different samples. For the p-doped 

samples, however, a Single Kane band model was used to calculate the Lorenz number. 

At 300 K, the density of states effective mass of light band (mL
*
) and heavy band (mH

*
) are 

fitted as 0.14 me and 1.7 me, respectively.  They linearly increase with temperature, as shown in 

Figure 2S (a) and (b). The reduced energy difference between the bottoms of the two bands ΔE is 

0.4 eV at 300 K and decrease with temperature for SnTe. 

The lattice thermal conductivity of the SnTe system was calculated as shown in Figure 3e for 

I-doped samples using a two band model to estimate the Lorentz number. In the case of SnTe1+x 

and Sn1-xGdxTe, the calculation lead to a much larger spread in κL values (±50%), we find that the 



differences are less large when a single band model is used. In addition, the two band model 

resulted in additional deviation. While we believe that the I-doped lattice thermal conductivity is 

more correct, we have included the lattice thermal conductivites of Te and Gd doped samples 

(estimated using a single Kane band model) in Figure S3.  

In addition to the transport properties shown in the main text, we have included the calculated 

temperature dependent power factor in Figure S4. We can see that the power factor is enhanced 

slightly in the I-doped sample, but the zT enhancement should also be reflected by the lower 

electronic thermal conductivity. 

In the main text, not all of the sample’s transport properties have been shown in order to more 

clearly show trends. We have included results from other synthesized samples in Figure S5 which 

represent the temperature dependent results for samples in Table S1. 

 

Figure S2. Density of states effective mass of: (a) light band (mL
*
), (b) heavy band (mH

*
), and (c) 

reduced energy difference between the bottoms of the two bands (ΔE). 

 



 

Figure S3. The lattice thermal conductivity of SnTe1+y and GdzSn1-zTe. (The Lorenz number was 

calculated by using SKB model) 

 

 

Figure S4 The power factor of SnTe, SnTe1+y, SnTe1-xIx, and GdzSn1-zTe. 



 

Figure S5 Thermoelectric transport properties for various SnTe samples: a) resistivity of SnTe and 

SnTe1-xIx, b) resistivity of SnTe, and GdzSn1-zTe, c) Seebeck of SnTe and SnTe1-xIx, d) Seebeck of SnTe 

and GdzSn1-zTe, e) thermal conductivity of SnTe and SnTe1-xIx, f) thermal conductivity of SnTe and 

GdzSn1-zTe, g) zT of SnTe and SnTe1-xIx, h) zT of SnTe and GdzSn1-zTe.  
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