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Figure S1. Top panel: atomistic snapshot showing the hydrogen bonds in t-butanol 
liquid at 298.15 K and lower panel: magnification of a region showing some molecules 
and their hydrogen bonds.
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(a) (b)

Figure S2. Sphere-and-stick representation of the H-bond networks in (a) xt-but = 0.50 
and (b) xa = 0.50. All results involving alcohols were obtained at 298.15 K and 
ammonia at 239.80 K. Each node (sphere) represents one molecule and the edges 
(sticks) the hydrogen bonds. The red and yellow balls represent H-bonded water and 
solute, respectively, whereas isolated (non-connected) nodes (molecules) are shown as 
white (water) and light blue (solute) spheres.
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Figure S3. Path lengths (L): (a), (c), and (e), and clustering coefficients (C): (b), (d), 
and (f), for the H-bond networks as a function of mixture composition, xs. (a) and (b) s = 
t-butanol at 298.15 K; (c) and (d) s = n-butanol at 298.15 K; (e) and (f) s = ammonia at 
239.8 K. For comparison, the random network values are presented.
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Comments on spectral density

The topological features of the network are also directly related to the spectral 
density. The eigenvalues of the network can be obtained from the adjacency matrix 
A(G) with N × N elements Aij that represent the graph G with N nodes, where the 
elements satisfy the condition Aij = Aji = 1 if nodes i and j are connected and 0, 
otherwise. The diagonalization of the matrix A(G) produces a set of N eigenvalues, j, 
which is the spectrum of the graph G and provides the following spectral density
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that approaches a continuous function when N  . The m-th momentum can be 
written as
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that is, this sum is the number of trajectories or paths that go to other nodes and return 
to the same node through m steps. For example, consider the aggregate that has 
connectivity or adjacency matrix given by equation S3 and represented by the graph of 
the first column of Table S1. The trajectories corresponding to m = 2, 3 and 4 steps are 
also shown in Table S1. It can be observed that odd momentum does not exist, i.e., there 
is no way to go back and forth to the same node through an odd number of steps.
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Table S1. Cluster with 3 components and possible trajectories or paths with m = 2, 
3 e 4 steps.
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The diagonalization of the adjacency matrix of this example produces the 
eigenvalues  = 0, ,  and momentum corresponding to m = 2, 3 and 4, 2 2
described respectively by
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Thus, these three eigenvalues produce three peaks in the spectral density plot. In the 
case of random graphs there is almost a continuum of eigenvalues, which is attributed to 
the fact that there are many possibilities for these trajectories. The larger the number of 
similar clusters or with the same number of similar components and connectivity, the 
smaller the number of momenta that contribute to the spectral density. Graphs with 
large number of isolated sites or nodes have a high peak at  = 0.

Often the spectral density is rescaled by,

Ordinate rescaling:       2/11 pNp 

Abscissa rescaling:    ,   2/11 pNp 
(S5)

where  is obtained from random graphs theory and it is equivalent to the 
N
kp 

probability of connection,  is the density and  is the eigenvalue, calculated for each 
sample and the average subsequently performed on all samples.

Illustration of clustering coefficient and degree calculations

Consider the example of a graph shown in Scheme S1. For example, if we wish 
calculate the clustering coefficient of site i, Ci, we need count the number of 
connections (dashed lines) between neighboring sites (in red) of i, in this case, are three: 
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Ci = 3. Whereas, the degree of site i (zi) is the number of connections (solid lines) of i, 
in this case, four: zi = 4. Thus, very different values for these properties are obtained 
mainly when there is a large number of connections (high degree value), but only a few 
connections between the neighbors (low clustering coefficient value), which usually 
occur when there are constraints to form new connections due to, for instance, steric 
hindrances.

Scheme S1. Graph with 9 sites. Nodes with connections to the site i are in red. The 
solid lines indicate connections with the site i, the dashed lines indicate connection 
between neighbors of the site i, and dotted lines connections between other nodes of the 
graph.


