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Figure S1. Photographs of the semiconductor-air cell in (a) top and (b) side views. 
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Figure S2. Dynamic step discharge response of heavily doped flat Si anodes at various 
current drains. 



Figure S3. Comparison of the practical energy density and anode utilization efficiency of 
different metal-air chemistries, emphasizing the advantages of p-type Ge-air cell in terms 

of high practical energy capacity and anode utilization.



Figure S4. Experimental mass loss during long-term discharge of p-type Ge-air cell and 
the computed mass loss due to the self-discharge, using an average corrosion current of 
5.02 µA cm-2 for p-type Ge from the corrosion experiments. The mass loss curves are 

assumed to be linear with respect to the discharge time.



Figure S5. (a) Plain and (b) cross section SEM images of the pristine p-type Ge anode 
before battery discharge. (c) Plain and (d) cross section SEM images of the post-

discharge p-type Ge anode, showing the change in surface morphology. SEM images of 
the cathode (e) before and (f) after long-term discharge. (g) X-ray diffractograms of the 
cathode (i) before and (ii) after long-term discharge, showing that the cathode remained 

the same.



Figure S6. Image of different gelled KOH electrolytes with varying gelling agent (CMC) 
amounts.


