Electronic Supplementary Information (ESI[†])

Substituents effect on the surface modification of anatase nanoparticles with

catecholate-type ligands: a combined DFT and experimental study

Tatjana D. Savić, ^a Mirjana I. Čomor, ^a Jovan M. Nedeljković, ^a Dušan Ž. Veljković, ^b Snežana D. Zarić, ^b Vesna M. Rakić ^c and Ivana A. Janković *^a

^a Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia

^b Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11058 Belgrade, Serbia ^c Department of Chemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Zemun, Serbia

Supporting information to DOI: 10.1039/b00000x/

Address correspondence to ivanaj@vinca.rs

Figure S1. Absorption spectra of TiO_2 nanoparticles (black), free ligands (red) and ligand- TiO_2 CT-complexes (blue) with 4% coverage in methanol/water=90/10, pH 2.

Figure S2 Absorption spectra of 3.6 mM TiO₂ (1 mM Ti_{surf}) nanoparticles before and after surface modification with 4-methylcatechol (0 – 0.6 mM in 0.04 mM steps) in methanol/water=90/10, pH = 2 (data recorded 20 h after surface modification).

Figure S3 Absorption spectra of 3.6 mM TiO₂ (1 mM Ti_{surf}) nanoparticles before and after surface modification with 3,4-dihydroxybenzaldehyde (0 – 0.6 mM in 0.04 mM steps) in methanol/water=90/10, pH = 2 (data recorded 20 h after surface modification).

Figure S4 Absorption spectra of 3.6 mM TiO₂ (1 mM Ti_{surf}) nanoparticles before and after surface modification with 4-nitrocatechol (0 – 0.6 mM in 0.04 mM steps) in methanol/water=90/10, pH = 2 (data recorded 20 h after surface modification).

Figure S5 FTIR spectra of 3MetCat: Experimental spectra of free 3MetCat (a) and adsorbed on TiO_2 nanoparticles (b); scaled predicted spectra at the B3LYP/6-31G** level of theory for bridging (c) and chelating (d) bidentate binding structure

Figure S6 FTIR spectra of 3MethoxyCat: Experimental spectra of free 3MethoxyCat (a) and adsorbed on TiO₂ nanoparticles (b); scaled predicted spectra at the B3LYP/6-31G** level of theory for bridging (c) and chelating (d) bidentate binding structure

Figure S7 FTIR spectra of 34DHBA: Experimental spectra of free 34DHBA (a) and adsorbed on TiO_2 nanoparticles (b); scaled predicted spectra at the B3LYP/6-31G** level of theory for bridging (c) and chelating (d) bidentate binding structure

Figure S8. TG (blue line) and heat flow (red line) curves of TiO₂ nanoparticles modified with Cat (a), 3MetCat (b), 4MetCat (c), 3MethoxyCat (d), 34DHBA (e) and 4NitCat (f) recorded at the heating rate of 20° C min⁻¹ in air.