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provided. In addition, auxiliary results mentioned throughout the original article, are given. The 
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iii. Frequency analyses for topoisomerase 
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1. METHODS AND FURTHER RESULTS 

i. Determination of Electric Field threshold values for the unfolding of topoisomerase and 
thioredoxin’s active sites. We	
  have	
   performed	
   the	
   simulations	
   under	
   an	
  NPT	
   ensemble	
   (constant	
  
number	
  of	
  particles,	
  pressure,	
  and	
  temperature)	
  with	
  explicit	
  water	
  molecules	
  of	
  the	
  TIP3P1	
  type.	
  We	
  
have	
  employed	
  the	
   ff99SB2	
   force	
   field.	
  After an initial preparation of the system, where protonation 
states of aminoacids were predicted with the PROPKA web interface,3 proteins topoisomerase III and 
thioredoxin were subjected to MD simulations for the determination of electric field threshold values 
for their respective unfolding. The simulation protocol was divided into 3 stages: phase 1, 
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corresponding to the systems’ minimization and equilibration stages; phase 2, production MDs lasting 
10 ns each for insuring that the systems were stabilized; and phase 3, where 3 different external 
electric fields (0.1, 0.5, and 1.0 V.nm-1) were applied lasting 10 ns each.  

For the minimization process the steepest descent algorithm of minimization was employed, with 
unlimited minimization steps until the maximum force, Fmax was no greater than 1000 kJ.mol-1.nm-1. 
Following minimization, two equilibration MD simulations were produced: one, in a canonical 
ensemble (constant number of particles, volume, and temperature – also referred as NVT) for 100 ps, 
in order to stabilize the system to the desired temperature; another, in an isothermal-isobaric ensemble 
for an additional 100 ps (constant number of particles, pressure, and temperature – also referred as 
NPT), closely resembling experimental conditions.  

For the production MD and simulations in NPT and with an external electric field, a standard protocol 
was conducted. The leap-frog integrator4 was employed with an integration time step of 2 fs. This was 
possible since the LINCS algorithm5 that constraints the bonds’ vibration was used. Since this is the 
fastest movement in an MD simulation a higher integration time step could be employed. The 
coordinates were saved and processed every 5 ps.  A 10 Å cut-off was considered for the neighbour 
search with the grid option. Periodic boundary conditions considering the 3 axis were employed. The 
Particle Mesh Ewald (PME)6 for long-range electrostatics was employed. The modified Berendsen 
thermostat (V-rescale)7 was used for the temperature coupling at 313.15 K, together with the 
Parrinello-Rahman pressure coupler8 at 1 atm (isotropically). The proteins’ centre of mass translation 
was removed.  

The analysis were performed with GROMACS9 utilities and with the Visual Molecular Dynamics 
(VMD) program.10 Ramachandran plots were analysed for the last 500 ps of each MD setting: 
production MD and MDs with the 3 different external electric field strengths; RMSd, radius of 
gyration, and secondary structure analysis was performed throughout the 10 ns. 

In the following, we present additional and complementary results. Specifically, root-mean-square 
deviation (RMSD), radius of gyration (relative to the crystallographic minimized and equilibrated 
structure), Ramachandran plots and secondary structure analysis are presented for the topoisomerase 
enzyme – Figures S1, S2 and S3, considering both the production simulation and simulations 
performed with the 3 different external electric fields. In addition, all the information relative to the 
thioredoxin protein is presented too – molecular structure representation, RMSD, radius of gyration, 
Ramachandran plots, and secondary structure analysis (Figure S4 – S7).  
 
 
 
 
 
 
 
 
 
 
 
 

Topoisomerase: 
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Figure S1. Root-mean-square deviation (RMSD), presented as a measure of protein stability, relative to the initial x-ray 

crystallography structure, minimized and equilibrated; and radius of gyration, as a measure of the proteins’ compactness (if a 
protein is stably folded it will likely maintain a steady behaviour of the radius of gyration). 

 

	
  

Figure S2. Ramachandran plots for the topoisomerase III protein, relative to the production MD simulation and 
the 3 tested external electric fields. 
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Figure S3. Graphical representation of secondary structure analysis, for the topoisomerase III protein, relative to 
the production MD simulation and the 3 tested external electric fields. Different colours represent the different 
secondary structure motifs: yellow – extended conformation (β-sheets), purple – α-helixes, green - turn, red – pi 
helix, blue – 3-10 helix, and white - coil. The secondary analysis should not be considered for the 1.0 V.nm-1 
past the dashed line, due to Periodic Boundary Condition (PBC) violation, since the protein extended past the 
periodic simulation box, and started to interact with the periodic image of itself (artefact). 

As can be observed by the analysis of Figures S1 and S3, both the	
  RMSD	
  and	
  radius	
  of	
  gyration	
  show	
  
a	
   relevant	
   increase	
   in	
  both	
   settings,	
   and	
   relevant distortion of the secondary structure elements are 
observed for the 0.5 V.nm-1 and the 1.0 V.nm-1 field strength (more pronounced for the latter).  
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Thioredoxin: 

	
  

	
  

 

Figure S4. Molecular representations’ end results for each of the MD simulations conducted for thioredoxin – at 
the end of 10 ns simulation in each situation. Only the protein structure and ssDNA chain are depicted. Water 
molecules are omitted for clarity. 

	
  

Figure S5. Root-mean-square deviation (RMSD), presented as a measure of protein stability, relative to the 
initial x-ray crystallography structure, minimized and equilibrated; and radius of gyration, as a measure of the 
proteins’ compactness (if a protein is stably folded it will likely maintain a steady behaviour of the radius of 
gyration). 
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Figure S6. Ramachandran plots for the thioredoxin protein, relative to the production MD simulation and the 3 
tested external electric fields. 

	
  

	
  

Figure S7. Graphical representation of secondary structure analysis, for the thioredoxin protein, relative to the 
production MD simulation and the 3 tested external electric fields. Different colours represent the different 
secondary structure motifs: yellow – extended conformation (β-sheets), purple – α-helixes, green - turn, red – pi 
helix, blue – 3-10 helix, and white - coil. 	
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ii. The harmonic approximation. 
We	
  consider	
  a	
  biomolecule	
  consisting	
  of	
  N	
  units	
  (which	
  could	
  be	
  atoms	
  in	
  an	
  atomistic	
  model	
  or	
  
groups	
  of	
  atoms	
  in	
  the	
  case	
  of	
  a	
  coarse	
  grained	
  force	
  field).	
  The	
  mass	
  of	
  each	
  atom	
  is	
  Ml	
  (l=N).	
  The	
  
Hamiltonian	
  (energy)	
  of	
  the	
  system	
  is	
  given	
  by	
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where	
  the	
  first	
  term	
  refers	
  to	
  the	
  kinetic	
  energy,	
  and	
  the	
  second	
  term	
  to	
  the	
  potential	
  (usually	
  called	
  

force	
  field).	
  Here,	
   	
  and	
   	
  refer	
  to	
  the	
  momentum	
  and	
  position	
  of	
  the	
  atom	
  l.	
  The	
  potential	
  

	
  can	
  be	
  a	
  complicated	
  function	
  of	
  the	
  positions.	
  It	
  includes	
  covalent,	
  ionic	
  and	
  

hydrogen	
  bonds	
  as	
  well	
  as	
  van	
  der	
  Waals	
  forces.	
  If	
  the	
  biomolecule	
  is	
  in	
  its	
  native	
  state	
  (global	
  
minimum)	
  or	
  in	
  a	
  local	
  minimum	
  of	
  Veff	
  the	
  positions	
  of	
  the	
  atoms	
  (units)	
  acquire	
  equilibrium	
  values	
  

Rl
(0),	
  and	
  one	
  can	
  denote	
  the	
  equilibrium	
  configuration	
  by	
  	
   .	
  

As	
  a	
  function	
  of	
  the	
  distance	
   between	
  two	
  atoms	
  l	
  and	
  n	
  connected	
  by	
  any	
  type	
  of	
  

chemical	
  bond,	
  either	
  of	
  covalent,	
  ionic,	
  hydrogen-­‐	
  or	
  van	
  der	
  Waals	
  type,	
  the	
  potential	
  Veff	
  	
  	
  will	
  be	
  
just	
  the	
  potential	
  energy	
  of	
  the	
  chemical	
  bond	
  Vbond	
  and	
  will	
  mostly	
  have	
  a	
  form	
  as	
  that	
  sketched	
  in	
  
Fig	
  2(a).	
  For	
  very	
  short	
  distances	
  the	
  potential	
  is	
  repulsive,	
  then	
  it	
  becomes	
  negative	
  and	
  shows	
  a	
  

minimum	
  at	
  the	
  equilibrium	
  distance	
   ,	
  and	
  finally	
  it	
  goes	
  to	
  zero	
  for	
  large	
  

distances	
  (dissociation	
  limit).	
  The	
  dissociation	
  limit	
  corresponds	
  to	
  the	
  energy	
  at	
  which	
  the	
  motion	
  of	
  
the	
  atoms	
  involved	
  in	
  the	
  bond	
  is	
  no	
  longer	
  oscillatory	
  but	
  unbound.	
  Therefore,	
  bond	
  breaking	
  
(dissociation)	
  occurs	
  if	
  the	
  bond,	
  initially	
  at	
  the	
  equilibrium	
  distance	
  d(0),	
  absorbs	
  an	
  amount	
  of	
  
energy	
  equal	
  to	
  V0	
  [see	
  Fig.	
  S8(a)].	
  It	
  is	
  important	
  to	
  point	
  out	
  that	
  near	
  the	
  equilibrium	
  distance	
  the	
  
potential	
  can	
  generally	
  be	
  fitted	
  by	
  a	
  parabola	
  [see	
  Fig.	
  S8(b)].	
  This	
  means	
  that	
  the	
  bond	
  between	
  the	
  
atoms	
  l	
  and	
  n	
  will	
  oscillate	
  with	
  a	
  well-­‐defined	
  frequency	
  near	
  equilibrium.	
  However,	
  this	
  so-­‐called	
  
harmonic	
  approximation11	
  is	
  only	
  valid	
  for	
  small	
  oscillations.	
  If,	
  for	
  some	
  reasons,	
  the	
  bond	
  performs	
  
large	
  amplitude	
  oscillations,	
  then	
  the	
  harmonic	
  potential	
  can	
  considerably	
  deviate	
  from	
  Vbond	
  and	
  the	
  
harmonic	
  approximation	
  breaks	
  down	
  [see	
  Fig.	
  S8(b)].	
  	
  

Since,	
  as	
  mentioned	
  before,	
  Veff	
  	
  is	
  a	
  complicated	
  function	
  of	
  the	
  positions	
  of	
  all	
  atoms,	
  the	
  
oscillations	
  of	
  the	
  distance	
  between	
  l	
  and	
  n	
  will	
  depend	
  on	
  the	
  oscillations	
  of	
  other	
  bonds.	
  This	
  
means	
  that,	
  even	
  for	
  small	
  oscillations	
  the	
  bonds	
  will	
  be	
  coupled.	
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Figure S8. (a) schematic plot of the behavior of the potential energy of a chemical bond (covalent, ionic, 
hydrogen or van der Waals) as a function of the distance d between the bonded atoms. The dashed line indicates 
the dissociation limit leading to bond breaking. If the bond absorbs an amount of energy equal to V0, bond 
breaking occurs. (b) Comparison between the real potential curve and the parabolic potential calculated using the 
harmonic approximation. For small oscillations the harmonic approximation works well. For large oscillations 
the harmonic potential deviates from the real potential. 
 
In	
  the	
  harmonic	
  approximation,	
  one	
  can	
  formally	
  map	
  the	
  biomolecule	
  to	
  a	
  system	
  of	
  3N	
  coupled	
  
harmonic	
  oscillators	
  by	
  expanding	
  the	
  potential	
  up	
  to	
  a	
  quadratic	
  order	
  in	
  the	
  atomic	
  displacements.	
  

If	
  we	
  write	
  !! = !!
(!) + !! 	
  ,	
  where	
  !!   is	
  a	
  vector	
  representing	
  the	
  displacement	
  of	
  atom	
  l	
  from	
  its	
  

equilibrium	
  position,	
  then	
  !!""	
  reads	
  	
  

!!"" !!,⋯ ,!! = !!"" !!
(!),⋯ ,!!

(!) +
1
2

!!!!""
!"!"!"!" !(!)

!!"!!" +⋯ ,                                                          (S2)      
!,!,!,!

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

where	
  the	
  first	
  term	
  is	
  just	
  –V0.	
  α	
  and	
  β	
  label	
  the	
  three	
  projections	
  of	
  the	
  vectors	
  in	
  the	
  x,y	
  and	
  z	
  
directions	
  in	
  space	
  (α,β=1,2,3).	
  The	
  force	
  constants	
  	
  

!!"#$ =
!!!!""

!"!"!"!" !(!)
,                                                                                                                                                                                                                                                                (S3)           

 
constitute	
  the	
  elements	
  of	
  the	
  3N	
  x	
  3N	
  Hessian	
  matrix	
  !.	
  	
  

	
  The	
  equations	
  of	
  motion	
  for	
  the	
  displacements	
  can	
  be	
  written	
  in	
  matrix	
  form	
  as	
  	
  

! ∙ ! ! = −! ∙ ! !                                                                                                                                                                                                                                                                         (!4)          	
  

where	
  	
  M is	
  a	
  diagonal	
  3N	
  x	
  3N	
  matrix	
  containing	
  the	
  atomic	
  masses,	
  given by !!"#$ = !!"!!"!!, 

and	
  	
  the	
  vector	
  ! = !!! ,… , !!" ,… , !!" 	
  contains	
  the	
  displacements	
  of	
  all	
  atoms.	
  Equation	
  (S4)	
  	
  can	
  
be	
  easily	
  rewritten	
  as	
  	
  

!
!
! ∙ ! ! = −!!!! ∙ ! ∙!!!! ∙!

!
! ∙ ! ! = ! ∙!

!
! ∙ !(!).                                         (S5) 

 
Since	
  the	
  mass	
  weighted	
  Hessian	
  (or	
  dynamical)	
  matrix	
  	
  !	
  is	
  real,	
  symmetric	
  and	
  positive	
  definite,	
  
and	
  therefore	
  it	
  has	
  only	
  real	
  and	
  positive	
  eigenvalues	
   !!!,… ,!!!! ,	
  which	
  are	
  the	
  squares	
  of	
  the	
  
eigenfrequencies	
  of	
  the	
  system.	
  Diagonalization	
  is	
  achieved	
  by	
  applying	
  a	
  unitary	
  matrix	
  !	
  such	
  that	
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! ∙ ! ∙ !! = ! =

!!! 0
0 !!!

⋯ 0
0 ⋮

⋮ 0
0 ⋯

⋱ 0
0 !!!!

.                                                                                (S6)	
  

Three	
  of	
  the	
  eigenvalues	
  are	
  zero,	
  since	
  they	
  correspond	
  to	
  translations	
  of	
  the	
  molecule	
  in	
  space.	
  If	
  
we	
  place	
  our	
  coordinate	
  system	
  at	
  the	
  center	
  of	
  mass	
  of	
  the	
  molecule,	
  both	
  translations	
  and	
  
rotations	
  of	
  the	
  molecule	
  as	
  a	
  whole	
  are	
  no	
  longer	
  considered	
  and	
  the	
  total	
  number	
  of	
  degrees	
  of	
  
freedom	
  reduces	
  to	
  3N-­‐6.	
  

Multiplying	
  Eq.	
  (S6)	
  by	
  !	
  and	
  using	
  the	
  property	
  ! ∙ !! = !! ∙ ! = !
	
  
,	
  where	
  !	
  is	
  the	
  identity	
  matrix,	
  

one	
  can	
  completely	
  decouple	
  the	
  equations	
  of	
  motions	
  as	
  	
  

! ∙!
!
! ∙ ! ! = ! ! = −!  ! ! ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (S7)	
  

	
  

where	
  the	
  vector	
  
!
A(t) = a1 (t), a2 (t),…, a3N !6 (t)( ) 	
  contains	
  the	
  displacements	
  written	
  on	
  the	
  

basis	
  of	
  the	
  eigenvectors	
  
!
Gj of	
  the	
  dynamical	
  matrix.	
  Note	
  that	
  we	
  now	
  consider	
  only	
  3N-­‐6	
  degrees	
  

of	
  freedom.	
  	
  

Thus, in the harmonic approximation one can describe the biomolecule as a system of 3N coupled 
harmonic oscillators (see Figure S9). This means that the equations of motion for the oscillators will 
be coupled, independently of whether one treats the oscillators classically or quantum mechanically. 
	
  

 

 
Figure S9: sketch of the mapping of the force field of a biomolecule onto a system of coupled harmonic 
oscillators. Only a part of an ideal molecule is shown. Dashed lines indicate where bonds between the selected 
part and the rest of the biomolecule might be present. The colored circles represent atoms within the 
biomolecule. Through the mapping the different bonds are replaced by springs. The harmonic potentials 
corresponding to the different springs are also shown. The couplings between oscillators are represented by 
arrows.  The magnitudes of the spring constants might be different, since the springs connect atoms of different 
types, and the second derivative of the potential with respect to the atomic coordinates depends on the properties 
of the specific atoms (see Equation S3). 

!"
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iii. Frequency analyses for topoisomerase. A detailed description of the normal modes and 
determined frequencies is discussed subsequently for Model 1 and Model 2. Only gas-phase 
results will be discussed. 

Model 1. The first model (Figure S10) was truncated at the Cβ carbon and at the 2nd heavy atom 
counting from the Cα carbon of the catalytic tyrosine residue (in each direction of the backbone) 
– comprising the carbonyl oxygen atom and the amide nitrogen atom. The determined 
frequencies (presented in wavenumbers) and normal modes are within the expected ranges, and 
a detailed description is given below.   

Frequencies above 2500 cm-1: This region is associated with the stretching modes for OH, NH, 
and CH (in this descending order); and also with the characteristic amide A vibration. For our 
study, these vibrational modes are not of a relevant nature, since we are interested in breaking 
more relevant peptide bonds (such as CN, CO, or CC). The highest frequency for this region is 
associated with the antisymmetric bond stretching between the N12-H14 and the N12-H15 
atoms; the lowest frequency with the C1-H13 stretching. These values are comprised between 
2885-3525 cm-1. 

 

Figure S10. Model 1 representation. Numbered in white are the heavy atoms in which the analysis of 
vibrational frequencies was focused – 1, 5, 7 and 10 are carbon atoms (colored grey); 2 and 11 are oxygen 
atoms (colored red); 3 and 12 are nitrogen atoms (colored blue). 

Frequencies 1200-1800 cm-1: This is our main region of interest, since relevant peptide group 
vibrations are within this range of values: CO stretch, CN stretch, and CH3 in plane bending. 
This region is also associated with the NH3

+ and CH deformations. The higher frequencies 
observed – 1741, 1709 cm-1, are associated with CO stretching events, of both CO groups; and 
concomitantly the antisymmetrical CN stretching (Figure S13 - panel 1). The other frequencies 
(ranging from 1260-1592 cm-1) are associated with CC and CN stretching modes (Figure S11 – 
panel 2), with Cα-Cβ stretching – 1386 cm-1, and with some bending contaminations associated 
with hydrogen atoms bound to heavy atoms.  

Frequencies below 1200 cm-1: in this region the categorisation of vibrational modes is tentative 
due to the wide range of skeletal vibrations that takes place in this region for each normal mode 
of vibration. But relevant stretching is found for the Cα-Cβ bond at 1074 cm-1. 
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Figure S11. Model 1 selected frequencies. Panels A-, A, and A+, represent the displacement (ranging 
from the maximum to the minimum amplitude) of the selected vibration mode; panel 1 represents the 
vibration at 1074 cm-1, panel 2 at 1481 cm-1, and panel 3 at 1709 cm-1. The principal vibrational modes 
are surrounded by ellipses. 

Model 2. The frequencies of Model 1 were then evaluated for Model 2 (Figure S12). Model 2 
represents 3 amino acid residues, comprising the catalytically relevant tyrosine residue and the 
two immediate residues. 

 

Figure S12. Representation of Model 2, 27 heavy atoms altogether. Numbered in white are the heavy 
atoms in which the analysis of vibrational frequencies was focused. 

Frequencies above 2500 cm-1: In this model, the highest frequencies are associated with OH and 
NH stretching events - 3319-3604 cm-1. The normal modes for CH stretching are followed 
ranging from 2907-3088 cm-1.  

Frequencies 1200-1800 cm-1: The higher frequencies observed are associated with the 
antisymmetric COO- stretching and two C(N)=O antisymmetric stretching (1708, 1700, and 
1625 cm-1), and the angular deformation of the NH3

+ group (1658 and 1512 cm-1). The other 
frequencies are associated with the C-C and C-N stretching modes, with some angle bending 
contaminations associated with hydrogen atoms bound to heavy atoms, and with the 
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deformation of tyrosine’s aromatic ring. One of the most promising results is the frequency 
difference of two OCN antisymmetric vibrational modes – O16C15N17 and O37C36N38 
(Figure S13 – panel 1 and 2). The same is observed for other vibrational frequencies, e.g. the 
CN stretching – N17C15 and N38C36. 

Frequencies below 1200 cm-1: again, categorisation of this region’s vibrational modes is 
tentative due to the wide range of skeletal vibrations that takes place in this region in each 
normal mode of vibration. However, two possible frequencies of interest arise from this region: 
one at 1040 cm-1 (Cα-Nbb stretching – C19N17) and another at the 1007 cm-1 (relevant Cα-Cβ 
stretching – C19C21) (Figure S13 – panel 5). 

 

Figure S13. Model 2 selected frequencies. Panels A-, A, and A+, represent the range from the maximum 
to the minimum displacement of the selected vibrational mode; panel 1 represents the vibration at 1007 
cm-1, panel 2 at 1625 cm-1, and panel 3 at 1700 cm-1. The principal vibrational modes are surrounded by 
ellipses. 
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iv Application of optimal control based on analytical and numerical calculations to induce 
energy concentration on particular bonds of model 1 of topoisomerase  

Further Results on the Analytical Optimization 

Below we show results for the analytical optimization of pulse trains 1 and 2 (see Figure 5 of 
the article). In	
  Fig.	
  S14	
  we	
  show	
  the	
  target	
  structure	
  for	
  the	
  action	
  of	
  pulse	
  train	
  1.	
  In	
  Fig.	
  S15	
  
we	
  show	
  results	
  for	
  the	
  tailored	
  pulse	
  train	
  1	
  and	
  its	
  effect	
  on	
  all	
  bond	
  lengths	
  of	
  Model	
  1	
  of	
  
topoisomerase	
  (see	
  article).	
  The	
  tailored	
  pulse	
  train	
  is	
  represented	
  by	
  the	
  vertical	
  lines	
  
(amplitudes	
  are	
  not	
  shown).	
  Remarkably,	
  the	
  pulse	
  induces	
  a	
  huge	
  elongation	
  of	
  the	
  bond	
  
between	
  atoms	
  3	
  and	
  5	
  at	
  the	
  desired	
  time.	
  Since	
  the	
  elongation	
  reaches	
  100%,	
  the	
  amount	
  of	
  
energy	
  concentrated	
  on	
  the	
  bond	
  is	
  enough	
  to	
  produce	
  bond	
  breaking.	
  Finally,	
  Figures	
  S16	
  and	
  
S17	
  show	
  results	
  of	
  the	
  analytical	
  optimization	
  for	
  the	
  action	
  of	
  pulse	
  train	
  2	
  on	
  Model	
  1	
  of	
  
topoisomerase.	
  

 

 
Figure S14: representation of the vector !!"#$%! to be reached by model 1 after excitation through the tailored pulse 
train 1. Arrows indicate direction of atomic displacements. Note that we set the displacements of atoms 3 and 5 
opposite to each other and large. The displacements of the other atoms are chosen in such a way that the molecule can 
effectively be broken at the desired position. This means, the displacements of atoms 1,2,4 and 13 are parallel to that 
of atom 3, while the other atoms move in direction of atom 5. In this way, only the bond between atoms 3 and 5 will 
be strongly stretched, while the other bonds will not suffer considerable stress. 
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Figure S15: effect of the tailored pulse train 1 on the time dependence of the 15 bonds of model 1 of topoisomerase. 
The black vertical lines represent the times at which the different pulses of the designed train are switched on. The 
red line shows the behavior of the bond length between atoms 3 and 5. Note that this bond is elongated by 100% at 
the final time, whereas all other bonds (green lines) are at most compressed/elongated by less than 40%. 
 

 
Figure S16: representation of the vector !!"#$%! to be reached by model 1 after excitation through the tailored pulse 
train 2. Arrows indicate direction of atomic displacements. Note that we set the displacements of atoms 5 and 10 
opposite to each other and large. The displacements of the other atoms are chosen in such a way that the molecule can 
effectively be broken at the desired position. In this way, only the bond between atoms 5 and 10 will be strongly 
stretched, while the other bonds will not suffer considerable stress. 
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Figure S17: effect of the tailored pulse train 1 on the time dependence of the 15 bonds of model 1 of topoisomerase. 
The black vertical lines represent the times at which the different pulses of the designed train are switched on. The 
red line shows the behavior of the bond length between atoms 5 and 10. Note that this bond is elongated by 100% at 
the final time, whereas all other bonds (green lines) are at most compressed/elongated by less than 35%. 
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