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designing shaped electromagnetic pulses, able to induce selective and specific bond breaking is also 
provided. In addition, auxiliary results mentioned throughout the original article, are given. The 
different sections of the SI are organized as in the original manuscript, and the contents are organized 
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1. Methods and further results 
i. Determination of electric field threshold values for the unfolding of topoisomerase 

and thioredoxin’s active sites 
ii. The harmonic approximation. 

iii. Frequency analyses for topoisomerase 
iv. Application of optimal control based on analytical and numerical calculations to 

induce energy concentration on particular bonds of model 1 of topoisomerase  
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1. METHODS AND FURTHER RESULTS 

i. Determination of Electric Field threshold values for the unfolding of topoisomerase and 
thioredoxin’s active sites. We	  have	   performed	   the	   simulations	   under	   an	  NPT	   ensemble	   (constant	  
number	  of	  particles,	  pressure,	  and	  temperature)	  with	  explicit	  water	  molecules	  of	  the	  TIP3P1	  type.	  We	  
have	  employed	  the	   ff99SB2	   force	   field.	  After an initial preparation of the system, where protonation 
states of aminoacids were predicted with the PROPKA web interface,3 proteins topoisomerase III and 
thioredoxin were subjected to MD simulations for the determination of electric field threshold values 
for their respective unfolding. The simulation protocol was divided into 3 stages: phase 1, 
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corresponding to the systems’ minimization and equilibration stages; phase 2, production MDs lasting 
10 ns each for insuring that the systems were stabilized; and phase 3, where 3 different external 
electric fields (0.1, 0.5, and 1.0 V.nm-1) were applied lasting 10 ns each.  

For the minimization process the steepest descent algorithm of minimization was employed, with 
unlimited minimization steps until the maximum force, Fmax was no greater than 1000 kJ.mol-1.nm-1. 
Following minimization, two equilibration MD simulations were produced: one, in a canonical 
ensemble (constant number of particles, volume, and temperature – also referred as NVT) for 100 ps, 
in order to stabilize the system to the desired temperature; another, in an isothermal-isobaric ensemble 
for an additional 100 ps (constant number of particles, pressure, and temperature – also referred as 
NPT), closely resembling experimental conditions.  

For the production MD and simulations in NPT and with an external electric field, a standard protocol 
was conducted. The leap-frog integrator4 was employed with an integration time step of 2 fs. This was 
possible since the LINCS algorithm5 that constraints the bonds’ vibration was used. Since this is the 
fastest movement in an MD simulation a higher integration time step could be employed. The 
coordinates were saved and processed every 5 ps.  A 10 Å cut-off was considered for the neighbour 
search with the grid option. Periodic boundary conditions considering the 3 axis were employed. The 
Particle Mesh Ewald (PME)6 for long-range electrostatics was employed. The modified Berendsen 
thermostat (V-rescale)7 was used for the temperature coupling at 313.15 K, together with the 
Parrinello-Rahman pressure coupler8 at 1 atm (isotropically). The proteins’ centre of mass translation 
was removed.  

The analysis were performed with GROMACS9 utilities and with the Visual Molecular Dynamics 
(VMD) program.10 Ramachandran plots were analysed for the last 500 ps of each MD setting: 
production MD and MDs with the 3 different external electric field strengths; RMSd, radius of 
gyration, and secondary structure analysis was performed throughout the 10 ns. 

In the following, we present additional and complementary results. Specifically, root-mean-square 
deviation (RMSD), radius of gyration (relative to the crystallographic minimized and equilibrated 
structure), Ramachandran plots and secondary structure analysis are presented for the topoisomerase 
enzyme – Figures S1, S2 and S3, considering both the production simulation and simulations 
performed with the 3 different external electric fields. In addition, all the information relative to the 
thioredoxin protein is presented too – molecular structure representation, RMSD, radius of gyration, 
Ramachandran plots, and secondary structure analysis (Figure S4 – S7).  
 
 
 
 
 
 
 
 
 
 
 
 

Topoisomerase: 
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Figure S1. Root-mean-square deviation (RMSD), presented as a measure of protein stability, relative to the initial x-ray 

crystallography structure, minimized and equilibrated; and radius of gyration, as a measure of the proteins’ compactness (if a 
protein is stably folded it will likely maintain a steady behaviour of the radius of gyration). 

 

	  

Figure S2. Ramachandran plots for the topoisomerase III protein, relative to the production MD simulation and 
the 3 tested external electric fields. 
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Figure S3. Graphical representation of secondary structure analysis, for the topoisomerase III protein, relative to 
the production MD simulation and the 3 tested external electric fields. Different colours represent the different 
secondary structure motifs: yellow – extended conformation (β-sheets), purple – α-helixes, green - turn, red – pi 
helix, blue – 3-10 helix, and white - coil. The secondary analysis should not be considered for the 1.0 V.nm-1 
past the dashed line, due to Periodic Boundary Condition (PBC) violation, since the protein extended past the 
periodic simulation box, and started to interact with the periodic image of itself (artefact). 

As can be observed by the analysis of Figures S1 and S3, both the	  RMSD	  and	  radius	  of	  gyration	  show	  
a	   relevant	   increase	   in	  both	   settings,	   and	   relevant distortion of the secondary structure elements are 
observed for the 0.5 V.nm-1 and the 1.0 V.nm-1 field strength (more pronounced for the latter).  
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Thioredoxin: 

	  

	  

 

Figure S4. Molecular representations’ end results for each of the MD simulations conducted for thioredoxin – at 
the end of 10 ns simulation in each situation. Only the protein structure and ssDNA chain are depicted. Water 
molecules are omitted for clarity. 

	  

Figure S5. Root-mean-square deviation (RMSD), presented as a measure of protein stability, relative to the 
initial x-ray crystallography structure, minimized and equilibrated; and radius of gyration, as a measure of the 
proteins’ compactness (if a protein is stably folded it will likely maintain a steady behaviour of the radius of 
gyration). 
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Figure S6. Ramachandran plots for the thioredoxin protein, relative to the production MD simulation and the 3 
tested external electric fields. 

	  

	  

Figure S7. Graphical representation of secondary structure analysis, for the thioredoxin protein, relative to the 
production MD simulation and the 3 tested external electric fields. Different colours represent the different 
secondary structure motifs: yellow – extended conformation (β-sheets), purple – α-helixes, green - turn, red – pi 
helix, blue – 3-10 helix, and white - coil. 	  
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ii. The harmonic approximation. 
We	  consider	  a	  biomolecule	  consisting	  of	  N	  units	  (which	  could	  be	  atoms	  in	  an	  atomistic	  model	  or	  
groups	  of	  atoms	  in	  the	  case	  of	  a	  coarse	  grained	  force	  field).	  The	  mass	  of	  each	  atom	  is	  Ml	  (l=N).	  The	  
Hamiltonian	  (energy)	  of	  the	  system	  is	  given	  by	  

	  	  	  	  	  	  
(S1)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

where	  the	  first	  term	  refers	  to	  the	  kinetic	  energy,	  and	  the	  second	  term	  to	  the	  potential	  (usually	  called	  

force	  field).	  Here,	   	  and	   	  refer	  to	  the	  momentum	  and	  position	  of	  the	  atom	  l.	  The	  potential	  

	  can	  be	  a	  complicated	  function	  of	  the	  positions.	  It	  includes	  covalent,	  ionic	  and	  

hydrogen	  bonds	  as	  well	  as	  van	  der	  Waals	  forces.	  If	  the	  biomolecule	  is	  in	  its	  native	  state	  (global	  
minimum)	  or	  in	  a	  local	  minimum	  of	  Veff	  the	  positions	  of	  the	  atoms	  (units)	  acquire	  equilibrium	  values	  

Rl
(0),	  and	  one	  can	  denote	  the	  equilibrium	  configuration	  by	  	   .	  

As	  a	  function	  of	  the	  distance	   between	  two	  atoms	  l	  and	  n	  connected	  by	  any	  type	  of	  

chemical	  bond,	  either	  of	  covalent,	  ionic,	  hydrogen-‐	  or	  van	  der	  Waals	  type,	  the	  potential	  Veff	  	  	  will	  be	  
just	  the	  potential	  energy	  of	  the	  chemical	  bond	  Vbond	  and	  will	  mostly	  have	  a	  form	  as	  that	  sketched	  in	  
Fig	  2(a).	  For	  very	  short	  distances	  the	  potential	  is	  repulsive,	  then	  it	  becomes	  negative	  and	  shows	  a	  

minimum	  at	  the	  equilibrium	  distance	   ,	  and	  finally	  it	  goes	  to	  zero	  for	  large	  

distances	  (dissociation	  limit).	  The	  dissociation	  limit	  corresponds	  to	  the	  energy	  at	  which	  the	  motion	  of	  
the	  atoms	  involved	  in	  the	  bond	  is	  no	  longer	  oscillatory	  but	  unbound.	  Therefore,	  bond	  breaking	  
(dissociation)	  occurs	  if	  the	  bond,	  initially	  at	  the	  equilibrium	  distance	  d(0),	  absorbs	  an	  amount	  of	  
energy	  equal	  to	  V0	  [see	  Fig.	  S8(a)].	  It	  is	  important	  to	  point	  out	  that	  near	  the	  equilibrium	  distance	  the	  
potential	  can	  generally	  be	  fitted	  by	  a	  parabola	  [see	  Fig.	  S8(b)].	  This	  means	  that	  the	  bond	  between	  the	  
atoms	  l	  and	  n	  will	  oscillate	  with	  a	  well-‐defined	  frequency	  near	  equilibrium.	  However,	  this	  so-‐called	  
harmonic	  approximation11	  is	  only	  valid	  for	  small	  oscillations.	  If,	  for	  some	  reasons,	  the	  bond	  performs	  
large	  amplitude	  oscillations,	  then	  the	  harmonic	  potential	  can	  considerably	  deviate	  from	  Vbond	  and	  the	  
harmonic	  approximation	  breaks	  down	  [see	  Fig.	  S8(b)].	  	  

Since,	  as	  mentioned	  before,	  Veff	  	  is	  a	  complicated	  function	  of	  the	  positions	  of	  all	  atoms,	  the	  
oscillations	  of	  the	  distance	  between	  l	  and	  n	  will	  depend	  on	  the	  oscillations	  of	  other	  bonds.	  This	  
means	  that,	  even	  for	  small	  oscillations	  the	  bonds	  will	  be	  coupled.	  	  	  
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Figure S8. (a) schematic plot of the behavior of the potential energy of a chemical bond (covalent, ionic, 
hydrogen or van der Waals) as a function of the distance d between the bonded atoms. The dashed line indicates 
the dissociation limit leading to bond breaking. If the bond absorbs an amount of energy equal to V0, bond 
breaking occurs. (b) Comparison between the real potential curve and the parabolic potential calculated using the 
harmonic approximation. For small oscillations the harmonic approximation works well. For large oscillations 
the harmonic potential deviates from the real potential. 
 
In	  the	  harmonic	  approximation,	  one	  can	  formally	  map	  the	  biomolecule	  to	  a	  system	  of	  3N	  coupled	  
harmonic	  oscillators	  by	  expanding	  the	  potential	  up	  to	  a	  quadratic	  order	  in	  the	  atomic	  displacements.	  

If	  we	  write	  !! = !!
(!) + !! 	  ,	  where	  !!   is	  a	  vector	  representing	  the	  displacement	  of	  atom	  l	  from	  its	  

equilibrium	  position,	  then	  !!""	  reads	  	  

!!"" !!,⋯ ,!! = !!"" !!
(!),⋯ ,!!

(!) +
1
2

!!!!""
!"!"!"!" !(!)

!!"!!" +⋯ ,                                                          (S2)      
!,!,!,!

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

where	  the	  first	  term	  is	  just	  –V0.	  α	  and	  β	  label	  the	  three	  projections	  of	  the	  vectors	  in	  the	  x,y	  and	  z	  
directions	  in	  space	  (α,β=1,2,3).	  The	  force	  constants	  	  

!!"#$ =
!!!!""

!"!"!"!" !(!)
,                                                                                                                                                                                                                                                                (S3)           

 
constitute	  the	  elements	  of	  the	  3N	  x	  3N	  Hessian	  matrix	  !.	  	  

	  The	  equations	  of	  motion	  for	  the	  displacements	  can	  be	  written	  in	  matrix	  form	  as	  	  

! ∙ ! ! = −! ∙ ! !                                                                                                                                                                                                                                                                         (!4)          	  

where	  	  M is	  a	  diagonal	  3N	  x	  3N	  matrix	  containing	  the	  atomic	  masses,	  given by !!"#$ = !!"!!"!!, 

and	  	  the	  vector	  ! = !!! ,… , !!" ,… , !!" 	  contains	  the	  displacements	  of	  all	  atoms.	  Equation	  (S4)	  	  can	  
be	  easily	  rewritten	  as	  	  

!
!
! ∙ ! ! = −!!!! ∙ ! ∙!!!! ∙!

!
! ∙ ! ! = ! ∙!

!
! ∙ !(!).                                         (S5) 

 
Since	  the	  mass	  weighted	  Hessian	  (or	  dynamical)	  matrix	  	  !	  is	  real,	  symmetric	  and	  positive	  definite,	  
and	  therefore	  it	  has	  only	  real	  and	  positive	  eigenvalues	   !!!,… ,!!!! ,	  which	  are	  the	  squares	  of	  the	  
eigenfrequencies	  of	  the	  system.	  Diagonalization	  is	  achieved	  by	  applying	  a	  unitary	  matrix	  !	  such	  that	  	  
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! ∙ ! ∙ !! = ! =

!!! 0
0 !!!

⋯ 0
0 ⋮

⋮ 0
0 ⋯

⋱ 0
0 !!!!

.                                                                                (S6)	  

Three	  of	  the	  eigenvalues	  are	  zero,	  since	  they	  correspond	  to	  translations	  of	  the	  molecule	  in	  space.	  If	  
we	  place	  our	  coordinate	  system	  at	  the	  center	  of	  mass	  of	  the	  molecule,	  both	  translations	  and	  
rotations	  of	  the	  molecule	  as	  a	  whole	  are	  no	  longer	  considered	  and	  the	  total	  number	  of	  degrees	  of	  
freedom	  reduces	  to	  3N-‐6.	  

Multiplying	  Eq.	  (S6)	  by	  !	  and	  using	  the	  property	  ! ∙ !! = !! ∙ ! = !
	  
,	  where	  !	  is	  the	  identity	  matrix,	  

one	  can	  completely	  decouple	  the	  equations	  of	  motions	  as	  	  

! ∙!
!
! ∙ ! ! = ! ! = −!  ! ! ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (S7)	  

	  

where	  the	  vector	  
!
A(t) = a1 (t), a2 (t),…, a3N !6 (t)( ) 	  contains	  the	  displacements	  written	  on	  the	  

basis	  of	  the	  eigenvectors	  
!
Gj of	  the	  dynamical	  matrix.	  Note	  that	  we	  now	  consider	  only	  3N-‐6	  degrees	  

of	  freedom.	  	  

Thus, in the harmonic approximation one can describe the biomolecule as a system of 3N coupled 
harmonic oscillators (see Figure S9). This means that the equations of motion for the oscillators will 
be coupled, independently of whether one treats the oscillators classically or quantum mechanically. 
	  

 

 
Figure S9: sketch of the mapping of the force field of a biomolecule onto a system of coupled harmonic 
oscillators. Only a part of an ideal molecule is shown. Dashed lines indicate where bonds between the selected 
part and the rest of the biomolecule might be present. The colored circles represent atoms within the 
biomolecule. Through the mapping the different bonds are replaced by springs. The harmonic potentials 
corresponding to the different springs are also shown. The couplings between oscillators are represented by 
arrows.  The magnitudes of the spring constants might be different, since the springs connect atoms of different 
types, and the second derivative of the potential with respect to the atomic coordinates depends on the properties 
of the specific atoms (see Equation S3). 

!"
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iii. Frequency analyses for topoisomerase. A detailed description of the normal modes and 
determined frequencies is discussed subsequently for Model 1 and Model 2. Only gas-phase 
results will be discussed. 

Model 1. The first model (Figure S10) was truncated at the Cβ carbon and at the 2nd heavy atom 
counting from the Cα carbon of the catalytic tyrosine residue (in each direction of the backbone) 
– comprising the carbonyl oxygen atom and the amide nitrogen atom. The determined 
frequencies (presented in wavenumbers) and normal modes are within the expected ranges, and 
a detailed description is given below.   

Frequencies above 2500 cm-1: This region is associated with the stretching modes for OH, NH, 
and CH (in this descending order); and also with the characteristic amide A vibration. For our 
study, these vibrational modes are not of a relevant nature, since we are interested in breaking 
more relevant peptide bonds (such as CN, CO, or CC). The highest frequency for this region is 
associated with the antisymmetric bond stretching between the N12-H14 and the N12-H15 
atoms; the lowest frequency with the C1-H13 stretching. These values are comprised between 
2885-3525 cm-1. 

 

Figure S10. Model 1 representation. Numbered in white are the heavy atoms in which the analysis of 
vibrational frequencies was focused – 1, 5, 7 and 10 are carbon atoms (colored grey); 2 and 11 are oxygen 
atoms (colored red); 3 and 12 are nitrogen atoms (colored blue). 

Frequencies 1200-1800 cm-1: This is our main region of interest, since relevant peptide group 
vibrations are within this range of values: CO stretch, CN stretch, and CH3 in plane bending. 
This region is also associated with the NH3

+ and CH deformations. The higher frequencies 
observed – 1741, 1709 cm-1, are associated with CO stretching events, of both CO groups; and 
concomitantly the antisymmetrical CN stretching (Figure S13 - panel 1). The other frequencies 
(ranging from 1260-1592 cm-1) are associated with CC and CN stretching modes (Figure S11 – 
panel 2), with Cα-Cβ stretching – 1386 cm-1, and with some bending contaminations associated 
with hydrogen atoms bound to heavy atoms.  

Frequencies below 1200 cm-1: in this region the categorisation of vibrational modes is tentative 
due to the wide range of skeletal vibrations that takes place in this region for each normal mode 
of vibration. But relevant stretching is found for the Cα-Cβ bond at 1074 cm-1. 
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Figure S11. Model 1 selected frequencies. Panels A-, A, and A+, represent the displacement (ranging 
from the maximum to the minimum amplitude) of the selected vibration mode; panel 1 represents the 
vibration at 1074 cm-1, panel 2 at 1481 cm-1, and panel 3 at 1709 cm-1. The principal vibrational modes 
are surrounded by ellipses. 

Model 2. The frequencies of Model 1 were then evaluated for Model 2 (Figure S12). Model 2 
represents 3 amino acid residues, comprising the catalytically relevant tyrosine residue and the 
two immediate residues. 

 

Figure S12. Representation of Model 2, 27 heavy atoms altogether. Numbered in white are the heavy 
atoms in which the analysis of vibrational frequencies was focused. 

Frequencies above 2500 cm-1: In this model, the highest frequencies are associated with OH and 
NH stretching events - 3319-3604 cm-1. The normal modes for CH stretching are followed 
ranging from 2907-3088 cm-1.  

Frequencies 1200-1800 cm-1: The higher frequencies observed are associated with the 
antisymmetric COO- stretching and two C(N)=O antisymmetric stretching (1708, 1700, and 
1625 cm-1), and the angular deformation of the NH3

+ group (1658 and 1512 cm-1). The other 
frequencies are associated with the C-C and C-N stretching modes, with some angle bending 
contaminations associated with hydrogen atoms bound to heavy atoms, and with the 
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deformation of tyrosine’s aromatic ring. One of the most promising results is the frequency 
difference of two OCN antisymmetric vibrational modes – O16C15N17 and O37C36N38 
(Figure S13 – panel 1 and 2). The same is observed for other vibrational frequencies, e.g. the 
CN stretching – N17C15 and N38C36. 

Frequencies below 1200 cm-1: again, categorisation of this region’s vibrational modes is 
tentative due to the wide range of skeletal vibrations that takes place in this region in each 
normal mode of vibration. However, two possible frequencies of interest arise from this region: 
one at 1040 cm-1 (Cα-Nbb stretching – C19N17) and another at the 1007 cm-1 (relevant Cα-Cβ 
stretching – C19C21) (Figure S13 – panel 5). 

 

Figure S13. Model 2 selected frequencies. Panels A-, A, and A+, represent the range from the maximum 
to the minimum displacement of the selected vibrational mode; panel 1 represents the vibration at 1007 
cm-1, panel 2 at 1625 cm-1, and panel 3 at 1700 cm-1. The principal vibrational modes are surrounded by 
ellipses. 
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iv Application of optimal control based on analytical and numerical calculations to induce 
energy concentration on particular bonds of model 1 of topoisomerase  

Further Results on the Analytical Optimization 

Below we show results for the analytical optimization of pulse trains 1 and 2 (see Figure 5 of 
the article). In	  Fig.	  S14	  we	  show	  the	  target	  structure	  for	  the	  action	  of	  pulse	  train	  1.	  In	  Fig.	  S15	  
we	  show	  results	  for	  the	  tailored	  pulse	  train	  1	  and	  its	  effect	  on	  all	  bond	  lengths	  of	  Model	  1	  of	  
topoisomerase	  (see	  article).	  The	  tailored	  pulse	  train	  is	  represented	  by	  the	  vertical	  lines	  
(amplitudes	  are	  not	  shown).	  Remarkably,	  the	  pulse	  induces	  a	  huge	  elongation	  of	  the	  bond	  
between	  atoms	  3	  and	  5	  at	  the	  desired	  time.	  Since	  the	  elongation	  reaches	  100%,	  the	  amount	  of	  
energy	  concentrated	  on	  the	  bond	  is	  enough	  to	  produce	  bond	  breaking.	  Finally,	  Figures	  S16	  and	  
S17	  show	  results	  of	  the	  analytical	  optimization	  for	  the	  action	  of	  pulse	  train	  2	  on	  Model	  1	  of	  
topoisomerase.	  

 

 
Figure S14: representation of the vector !!"#$%! to be reached by model 1 after excitation through the tailored pulse 
train 1. Arrows indicate direction of atomic displacements. Note that we set the displacements of atoms 3 and 5 
opposite to each other and large. The displacements of the other atoms are chosen in such a way that the molecule can 
effectively be broken at the desired position. This means, the displacements of atoms 1,2,4 and 13 are parallel to that 
of atom 3, while the other atoms move in direction of atom 5. In this way, only the bond between atoms 3 and 5 will 
be strongly stretched, while the other bonds will not suffer considerable stress. 
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Figure S15: effect of the tailored pulse train 1 on the time dependence of the 15 bonds of model 1 of topoisomerase. 
The black vertical lines represent the times at which the different pulses of the designed train are switched on. The 
red line shows the behavior of the bond length between atoms 3 and 5. Note that this bond is elongated by 100% at 
the final time, whereas all other bonds (green lines) are at most compressed/elongated by less than 40%. 
 

 
Figure S16: representation of the vector !!"#$%! to be reached by model 1 after excitation through the tailored pulse 
train 2. Arrows indicate direction of atomic displacements. Note that we set the displacements of atoms 5 and 10 
opposite to each other and large. The displacements of the other atoms are chosen in such a way that the molecule can 
effectively be broken at the desired position. In this way, only the bond between atoms 5 and 10 will be strongly 
stretched, while the other bonds will not suffer considerable stress. 
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Figure S17: effect of the tailored pulse train 1 on the time dependence of the 15 bonds of model 1 of topoisomerase. 
The black vertical lines represent the times at which the different pulses of the designed train are switched on. The 
red line shows the behavior of the bond length between atoms 5 and 10. Note that this bond is elongated by 100% at 
the final time, whereas all other bonds (green lines) are at most compressed/elongated by less than 35%. 
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