Supporting Information

Interface engineering for highly sensitive solution processed

organic photodiode

Yu Jin Kim[†], Chan Eon Park*'[†] and Dae Sung Chung*'[‡]

[†] POSTECH Organic Electronics Laboratory, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
[‡]School of Chemical Engineering and Material Science Chung-Ang University, Seoul, 156– 756, Republic of Korea

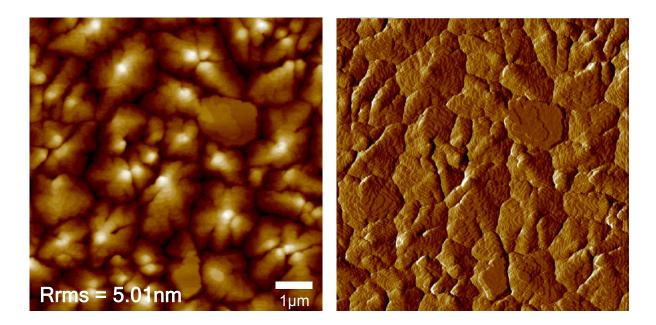


Figure S1. AFM height (left) and phase (right) image of Pentacene on the ITO-coated glass

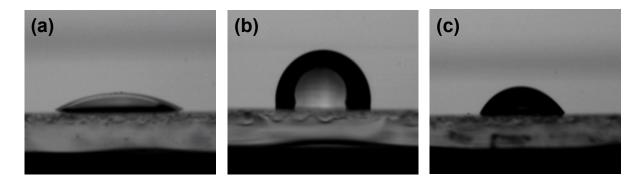


Figure S2. Photographs of water droplets on the different surface layers: (a) PEDOT:PSS, (b) Pentacene and (c) p-DTS(FBTTh₂)₂

	Contact	t angle (°)			
	Water	Diiodomethane	γ_s^{p} (mJ m ⁻²) ^a	$\gamma_s^{\ d}(mJ\ m^{-2})^b$	$\gamma_s^{c} (\gamma_s^{p} + \gamma_s^{d}) (mJ m^{-2})$
PEDOT:PSS	28	25	34.01	32.29	66.30
Pentacene	96	67	1.98	22.71	24.69
p-DTS(FBTTh ₂) ₂	64	52	16.04	25.02	41.24

 Table S1. Surface energy of three different layers

^a γ_s^{p} : the polar component ^b γ_s^{d} : the dispersion component ^c γ_s : the surface energy (The γ_s values were calculated according to the following equation by fitting to the measured values of the contact angles :

$$1 + \cos \theta = \frac{2(\gamma_s^d)^{1/2} (\gamma_{IV}^d)^{1/2}}{\gamma_{IV}} + \frac{2(\gamma_s^p)^{1/2} (\gamma_{IV}^p)^{1/2}}{\gamma_{IV}}$$