ELECTRONIC SUPPLEMENTARY INFORMATION

The effect of the cation alkyl chain branching on the behaviour of ionic liquids: Mutual solubilities with water and toxicities

Kiki A. Kurnia,¹ Tânia E. Sintra,¹ Catarina M. S. S. Neves,¹ Karina Shimizu,^{2,3} José N. Canongia Lopes,^{2,3} Sónia P. M. Ventura,¹ Mara G. Freire,¹ Luís M. N. B. F. Santos,⁴ and João A. P. Coutinho^{1*}

- 1Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
- 2Centro de Química Estructural, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
- 3Insituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida República, 2780-157 Oeiras, Portugal.
- 4Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, P-4169-007 Porto, Portugal.

*Corresponding author:

E-mail address: jcoutinho@ua.pt; Tel: +351-234-370200; Fax: +351-234-370084

	$[i-C_4C_1im][NTf_2]$	$[i-C_4-3-C_1py][NTf_2]$	$[i-C_4C_1pyrr][NTf_2]$	[<i>i</i> -C ₄ C ₁ pip][NTf ₂]	$[C_4C_1pip][NTf_2]$
<i>T</i> /K			$x_{ m w}$		
288.15	0.216(9)	0.180(8)	0.135(4)	0.117(1)	0.158(1)
293.15	0.224(4)	0.196(3)	0.155(1)	0.134(1)	0.171(6)
298.15	0.241(9)	0.215(1)	0.178(2)	0.155(4)	0.189(3)
303.15	0.257(2)	0.238(5)	0.195(7)	0.173(8)	0.209(3)
308.15	0.277(1)	0.255(8)	0.214(7)	0.195(1)	0.228(1)
313.15	0.293(2)	0.275(1)	0.236(6)	0.213(7)	0.248(6)
318.15	0.310(6)	0.293(1)	0.254(5)	0.233(8)	0.265(4)
<i>T</i> /K			$10^4 \cdot x_{\text{IL}}$		
288.15	3.412(2)	2.564(5)	2.764(6)	2.468(6)	1.825(4)
293.15	3.561(1)	2.690(1)	2.890(2)	2.563(3)	1.992(1)
298.15	3.813(5)	2.838(9)	3.038(9)	2.683(1)	2.070(2)
303.15	4.267(3)	2.957(6)	3.227(7)	2.791(9)	2.304(9)
308.15	4.596(1)	3.137(7)	3.437(7)	2.971(6)	2.294(1)
313.15	4.968(1)	3.275(4)	3.675(2)	3.094(6)	2.385(1)
318.15	5.396(4)	3.395(6)	3.895(7)	3.171(7)	2.527(1)

Table S1 Solubilities of water in the IL-rich phase (x_w) and of IL in the water-rich phase (x_{IL}), expressed in mole fractions, at temperatures from 288.15 to 318.15 K.^{*a*}

^{*a*}The values between parentheses represent the standard deviation associated with the last representative digit.

	$[i-C_4C_1im][NTf_2]$	$[i-C_4-3-C_1py][NTf_2]$	[<i>i</i> -C ₄ C ₁ pyrr][NTf ₂]	[<i>i</i> -C ₄ C ₁ pip][NTf ₂]	[C ₄ C ₁ pip][NTf ₂]
A	2.42(2)	3.51(6)	4.68(6)	5.23(9)	3.79(3)
<i>-B</i> /K	1143(41)	1505(36)	1919(69)	2122(61)	1625(28)
-C	172(87)	-0.121(29)	146(22)	18(52)	407(260)
D/K	6177(3918)	-1106(1299)	5308(1010)	-259(2362)	17520(11731)
Ε	25(13)	-1(4)	21(3)	2(8)	60(39)

Table S2 Fitted parameters from the correlation of the experimental data with equations 1 and 2.^{*a*}

^{*a*}The values between parentheses represent the standard deviation of each parameter.

	$\Delta_{sol}G_m^0/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	$\Delta_{sol}H_m^0/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	$\Delta_{sol} S_m^0 / (\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1})$
$[i-C_4C_1im][NTf_2]$	19.5(0.005)	11.2(1.5)	-28.0(5.0)
$[C_4C_1im][NTf_2]^{-1}$	20.1(0.008)	7.1(1.5)	-43.4(5.1)
[<i>i</i> -C ₄ -3-C ₁ py][NTf ₂]	20.2(0.007)	7.3(1.5)	-43.4(5.0)
$[C_4-3-C_1py][NTf_2]^2$	21.0(0.005)	5.3(1.5)	-52.7(5.2)
$[i-C_4C_1pyrr][NTf_2]$	20.1(0.006)	8.1(1.5)	-40.2(5.0)
$[C_4C_1pyrr][NTf_2]^3$	20.7(0.010)	5.2(1.5)	-51.9(5.1)
[<i>i</i> -C ₄ C ₁ pip][NTf ₂]	20.4(0.009)	6.6(1.5)	-46.1(5.0)
[C ₄ C ₁ pip][NTf ₂]	21.0(0.009)	2.3(1.5)	-62.8(5.0)

Table S3. Standard thermodynamic molar properties of solution of ILs in water at 298.15 K.^a

^{*a*}The values between parentheses represent the standard deviation of each parameter.

$V_{\rm m}/{\rm cm^3 \cdot mol-1}$
292.7539
291.7637
304.3470
303.1992
301.3513
301.6945
315.6823
312.3848

Table S4 Molar volume of the studied ionic liquids^a

^{*a*} Molar volume is equal to molecular weight per density of ILs. The density of ILs was measured using SVM-3000 Anton Paar Stabinger viscometer-densimeter

Table S5 Microtox[®] EC₅₀ values (mg.L⁻¹) of the studied ILs after 5, 15 and 30 min of exposure to the luminescent marine bacteria *V. fischeri*, with the respective 95 % confidence limits (in brackets).

	Ionic liquids		EC ₅₀ (mg.L ⁻¹) (lower limit; upper limit)	
		5 min	15 min	30 min
Non-aromatic ILs	[C ₄ C ₁ pyrr][NTf ₂]	532.51 (430.35; 634.68)	436.03 (365.94; 506.12)	416.59 (370.34; 462.84)
	[<i>i</i> -C ₄ C ₁ pyrr][NTf ₂]	442.22 (259.88; 624.56)	384.80 (164.44; 605.15)	350.39 (252.79; 447.99)
	$[C_4C_1pip][NTf_2] \qquad 352.57 \\ (156.74; 548.40)$		311.42 (284.85; 337.99)	304.50 (297.19; 311.82)
	[<i>i</i> -C ₄ C ₁ pip][NTf ₂]	193.17 (164.79; 221.56)	175.67 (158.06; 193.29)	214.88 (159.25; 270.52)
Aromatic ILs	$[C_4C_1im][NTf_2]$	141.99ª (70.99; 425.96)	141.99ª (70.99; 141.99)	
	$[i-C_4C_1im][NTf_2]$	442.93ª (223.57; 585.99)	283.81ª (210.95; 381.88)	
	$[C_4-3-C_1py][NTf_2]$	42.21 (34.76; 49.67)	38.34 (32.12; 44.57)	43.54 (32.60; 54.48)
	$[i-C_4-3-C_1py][NTf_2]$	137.00 (123.27; 150.73)	113.02 (102.41: 123.63)	134.73 (105.62; 163.83)

^{*a*}Data from reference ⁴

	N ion pairs	$N H_2 O$	V_{box}/nm^3	l _{box} /nm
[C ₃ C ₁ im][NTf ₂]	320	-	139.8	5.19
$[C_4C_1im][NTf_2]$	300	-	147.2	5.28
$[i-C_4C_1im][NTf_2]$	300	-	140.6	5.20
$[C_3C_1im][NTf_2]$	300	130	137.4	5.16
$[C_4C_1im][NTf_2]$	300	130	144.7	5.25
$[i-C_4C_1im][NTf_2]$	300	130	144.7	5.25
$[C_3C_1im][NTf_2]$	1	600	19.9	2.71
$[C_4C_1im][NTf_2]$	1	600	19.0	2.67
$[i-C_4C_1im][NTf_2]$	1	600	19.5	2.69

 Table S6 Studied systems and simulation conditions (equilibrated boxes).

Fig. S1 Liquid-liquid phase diagrams of water and ionic liquids: (a) ionic-liquid-rich phase; and (b) water-rich phase. Symbols (experimental) : (\diamond , \diamond) [C₄C₁im][NTf₂]; (\blacksquare , \Box) [C₄-3-C₁py][NTf₂]; (\blacktriangle , Δ) [C₄C₁pyrr][NTf₂]; and (\bullet , \circ) [C₄C₁pip][NTf₂]. The closed and open symbols represent *i*-butyl and *n*-butyl, respectively. The matching colour full and dashed lines represent, respectively, the COSMO-RS predictions for the ILs *i*-butyl and *n*-butyl using parameterization BP_TZVP_C20_0111.

Fig. S2 Liquid-liquid phase diagrams of water and ionic liquids: (a) ionic-liquid-rich phase; and (b) water-rich phase. Symbols (experimental) : (\diamond , \diamond) [C₄C₁im][NTf₂]; (\blacksquare , \Box) [C₄-3-C₁py][NTf₂]; (\blacktriangle , Δ) [C₄C₁pyrr][NTf₂]; and (\bullet , \circ) [C₄C₁pip][NTf₂]. The closed and open symbols represent *i*-butyl and *n*-butyl, respectively. The matchingcolour full and dashed lines represent, respectively, the COSMO-RS predictions for the ILs *i*-butyl and *n*-butyl using parameterization BP TZVP C30 1401.

References

- Freire, M. G.; Neves, C. M. S. S.; Carvalho, P. J.; Gardas, R. L.; Fernandes, A. M.; Marrucho, I. M.; Santos, L. M. N. B. F.; Coutinho, J. A. P. J. Phys. Chem. B 2007, 111, 13082.
- 2 Freire, M. G.; Neves, C. M. S. S.; Shimizu, K.; Bernardes, C. E. S.; Marrucho, I. M.; Coutinho, J. A. P.; Lopes, J. N. C.; Rebelo, L. P. N. J. Phys. Chem. B 2010, 114, 15925.
- 3 Freire, M. G.; Neves, C. M. S. S.; Ventura, S. P. M.; Pratas, M. J.; Marrucho, I. M.; Oliveira, J.; Coutinho, J. A. P.; Fernandes, A. M. *Fluid Phase Equilib.* 2010, 294, 234.
- 4 Ventura, S. P. M.; Marques, C. S.; Rosatella, A. A.; Afonso, C. A. M.; Gonçalves, F.; Coutinho, J. A. P. *Ecotoxicol. Environ. Saf* 2012, *76*, 162.