Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supporting Information

C₂H₄ purity

The purity of the ethene feed was checked by means of GC-MS analysis (Agilent, GC 6890 with MSD 5973, separation column: HP-5MS 19091S-433) with special attention to other unsaturated compounds. A flow of $[C_2H_4] = 5.0 \cdot 10^{13}$ molecule cm⁻³ from a gas mixing unit in air at 1 bar was pumped continuously through a heated GC-loop coupled with a pre-focusing device where the gas sample from the GC-loop was flushed through an uncoated, deactivated fused silica capillary (0.32 mm i.d.) and trapped at liquid N₂ temperature. After flash heating, the substances were directly injected at the separation column. This approach allows the detection of compounds with concentrations down to 10⁹ molecule cm⁻³.^{S1} Figure S1 shows the total ion chromatogram in the range 35 - 150 amu. Ethene is not detectable under these conditions, but all other unsaturated impurities like propene, the butenes, etc. Beside the system-permanent impurities acetone and benzene, no other compounds were observed. A conservative estimated yields an upper limit of unsaturated impurities of $5 \cdot 10^9$ molecule cm⁻³, i.e. $1/10^4$ of the concentration of ethene.

Fig.S1: Gas chromatogram of an ethene sample (5.0 · 10¹³ molecule cm⁻³) diluted in air.

Modelling of the reaction system

Modelling of the reaction system at RH = 0% has been performed in order to assess the importance of different steps for the consumption of CH_2OO under the chosen experimental conditions. For simplicity, the OH radical chemistry was omitted because all runs for the CH_2OO kinetics were conducted in presence of an OH radical scavenger.

$O_3 \ + \ C_2H_4$	\rightarrow	$0.4 \cdot CH_2OO + CH_2O +; 1.58 \cdot 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	(S1)
$CH_2OO + SO_2$	\rightarrow	$CH_2O + SO_3(H_2SO_4)$; 3.9·10 ⁻¹¹ or 3.9·10 ⁻¹² cm ³ molecule ⁻¹ s ⁻¹	(S2)
CH ₂ OO	\rightarrow	dioxirane, OH,; 100 or 0.3 s ⁻¹	(83)
CH ₂ OO	\rightarrow	wall ; 0.034 s ⁻¹	(S4)
$CH_2OO + CH_2OO$	\rightarrow	products ; $2 \cdot 10^{-10}$ cm ³ molecule ⁻¹ s ⁻¹	(85)
$CH_2OO + CH_2O$	\rightarrow	products ; $1 \cdot 10^{-12}$ cm ³ molecule ⁻¹ s ⁻¹	(S6)
$CH_2OO + H_2SO_4$	\rightarrow	products ; $5 \cdot 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	(S7)

The rate coefficient k_{S1} was taken from ref.S2, the CH₂OO formation yield of 0.4 for reaction (S1) from literature data and as a result of this study (see main text) and the CH₂O formation yield of unity from ref.S3. For k_{S2} the value by Welz et al.^{S4} or one-tenth of that was used. Immediate H₂SO₄ formation from SO₃ in the RH range of 2 - 50% is assumed. For k_{S3} the data by Welz et al.^{S4} (100 s⁻¹ representing probably an upper limit) or Olzmann et al.^{S5} (0.3 s⁻¹) was taken. The first-order rate coefficient for the diffusion-limited wall loss was estimated according $k_{S4} = 3.65 \cdot D/r^2$, D = diffusion coefficient of CH₂OO and r stands for the tube radius. As the diffusion coefficient a value of 0.15 cm² s⁻¹ was adopted from experimental data for H₂O₂ ^{S6} resulting in $k_{S4} = 0.034$ s⁻¹. The rate coefficient k_{S5} was taken from literature^{S7} and for k_{S6} a value obtained for CH₂OO + CH₃CHO^{S8} was applied. The rate coefficient k_{S7} was taken from literature^{S9} Initial conditions are: [O₃] = 2.2 \cdot 10^{11}, [C₂H₄] = 1.5 \cdot 10^{13} and [SO₂] = 1 \cdot 10^{12} molecule cm⁻³, t = 39.5s.

k_{S2} (cm ³ molecule ⁻¹ s ⁻¹)	3.9.10-11	3.9.10-11	3.9.10-12
k ₈₃ (s ⁻¹)	100	0.3	0.3
steady state [CH ₂ OO] (molecule cm ⁻³)	1.5.104	5.3.104	4.9·10 ⁵
CH ₂ OO fraction reacting via			
path (S2)	0.28	0.99	0.92
path (S3)	0.72	7.6.10-3	0.07
path (S4)	2.4.10-4	8.6.10-4	8.0.10-3
path (S5)	2.1.10-8	2.7.10-7	2.3.10-5
path (S6)	7.4·10 ⁻⁷	2.6.10-6	2.4.10-5
path (S7)	4.2.10-7	5.2.10-6	4.4.10-5
H_2SO_4 fraction reacting via path (S7)	1.5.10-6	5.2.10-6	4.8.10-5

Table S1: Result from modelling, pathways (S1) – (S6)

The CH₂OO fraction reacting in the self reaction via path (S5), in the reaction with CH₂O via path (S6) and with H₂SO₄ via path (S7) is in each case smaller than 10^{-4} (0.01 %) even for the lower rate coefficient k_{S2} and the lower value for k_{S3} (and low [SO₂] = 10^{12} molecule cm⁻³). The diffusion-limited wall loss accounts for less than 1 % of CH₂OO consumption. The importance of pathways (S4) – (S6) is further pushed back for rising SO₂ concentrations and in the presence of water vapour. The steady state CH₂OO concentrations in these scenarios are in the range $10^4 - 5 \cdot 10^5$ molecule cm⁻³ and become lower with increasing SO₂ concentrations and increasing water vapour content. The H₂SO₄ fraction reacting with CH₂OO is also very small and cannot influence the data analysis.

Prompt OH radical formation

For high SO₂ concentrations (CH₂OO titration by SO₂), the measurements in absence of C₃H₈ showed some higher H₂SO₄ concentrations compared with the conditions in presence of C₃H₈ for OH radical scavenging, see Fig.2a. The additional H₂SO₄ is attributed to prompt OH radicals (y₁) reacting with SO₂ (~ 10¹⁴ molecule cm⁻³) in competition with the reaction with C₂H₄ (1.5·10¹³ molecule cm⁻³).

$$OH + SO_2 \longrightarrow ... \longrightarrow H_2SO_4$$
 (S7)

 $OH + C_2H_4 \rightarrow products$ (S8)

The concentration of formed OH is:

$$[OH] = [H_2 SO_4] \cdot (1 + \frac{k_{S8} [C_2 H_4]}{k_{S7} [SO_2]})$$
(SI)

Rearrangement yields:

$$[H_2SO_4] = [OH] \cdot 1/(1 + \frac{k_{S8}[C_2H_4]}{k_{S7}[SO_2]})$$
(SII)

In Fig.S2 the data for the additional $[H_2SO_4]$ are plotted according to equation (SII) for different RH. The slope through the origin yields total $[OH] = (1.19 \pm 0.05) \cdot 10^7$ molecule cm⁻³. The amount of reacted $[C_2H_4] = k_4[C_2H_4][O_3] \cdot t$ was 2.06 $\cdot 10^8$ molecule cm⁻³ yielding a prompt OH radical yield $y_1 = 0.06 \pm 0.03$. The error includes the uncertainty of H_2SO_4 calibration.

Fig.S2: Additional $[H_2SO_4]$ for different RH plotted according to equation (SII). Error bars represent the uncertainty of the H_2SO_4 measurement.

Supporting references:

- S1 T. Berndt and O. Böge, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1205.
- S2 R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, M. J. Rossi and J. Troe, J. Phys. Chem. Ref. Data, 1997, 26, 521.
- S3 E. Grosjean and D. Grosjean, Enviro. Sci. Technol., 1996, 30, 2036.
- S4 O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross and C. A. Taatjes, *Science*, 2012, 335, 204.
- S5 M. Olzmann, E. Kraka, D. Cremer, R. Gutbrot and S. Andersson, *J. Phys. Chem. A*, 1997, **101**, 9421.
- S6 A. V. Ivanov, S. Trakhtenberg, A. K. Bertram, Y. M. Gershenzon and M. J. Molina, *J. Phys. Chem. A*, 2007, **111**, 1632.
- S7 Y.-T. Su, H.-Y. Lin, R. Putikam, H. Matsui, M. C. Lin and Y.-P. Lee, *Nature Chem.*, 2014, doi: 10.1038/NCHEM.1890.
- S8 C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. K.
 W. Mok, D. E. Shallcross and C. J. Percival, *Phys. Chem. Chem. Phys.*, 2012, 14, 10391.
- S9 L. Vereecken, H. Harder and A. Novelli, *Phys. Chem. Chem. Phys.*, 2012, 14, 14682.