ESI: Electronic Supplementary Information

Particle shapes and surface structures of olivine NaFePO₄ in comparison to LiFePO₄

Alexander Whiteside,^a Craig A. J. Fisher,^b Stephen C. Parker,^a M. Saiful Islam^{a*} ^a Dept of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom.

^b Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan

* Corresponding author: m.s.islam@bath.ac.uk

Table S1: Interatomic potential pa	arameters for I	LiFePO₄ and	NaFePO ₄
------------------------------------	-----------------	-------------	---------------------

a) Two-body Buckingham and shell potential parameters

Interaction	A (eV)	ρ (Å)	C (eV.Å ⁶)	<i>Y</i> (e)	K (eV.Å ⁻²)
Li ⁺ - O ²⁻	632.1010	0.2906	0.0	1.0	99999.0
Na ⁺ - O ²⁻	629.757635	0.317034	0.0	1.0	99999.0
Fe ²⁺ - O ²⁻	1105.2409	0.3106	0.0	2.997	19.26
P ⁵⁺ - O ²⁻	897.2648	0.3577	0.0	5.0	99999.0
O ²⁻ - O ²⁻	22764.3	0.149	44.53	-2.96	65.0

b) Three-body harmonic potential

Bond	k (eVrad-2)	$ heta_{ heta}$ (°)	
O ²⁻ - P ⁵⁺ - O ²⁻	632.1010	0.2906	

Table S2: Calculated properties of surfaces of NaFePO₄

	Tasker	d-spacing	Surface energy	∉ E _{surface} /J m ⁻²
Surface	surface type	d _{hkl} /Å	Unrelaxed	Relaxed
(010)	III	3.09	1.31	0.52
(110)	II	2.65	3.06	0.54
(221)	II	2.33	2.29	0.58
(120)	III	1.48	2.95	0.59
(021)	II	1.31	2.14	0.62
(201)	III	3.56	1.25	0.63
(211)	III	3.08	2.36	0.63
(011)	III	3.85	2.54	0.64
(210)	III	3.96	2.33	0.68
(111)	III	3.60	2.64	0.68
(100)	III	5.16	1.73	0.68
(101)	III	4.44	1.41	0.74
(121)	II	2.54	2.21	0.70
(212)	III	2.09	2.27	0.75
(012)	II	1.14	4.24	0.77
(112)	III	2.23	2.46	0.79
(122)	II	1.89	3.43	0.81
(102)	III	2.39	2.90	0.82
(001)	Ш	2.46	2.29	0.90

Na	Tasker	Relaxed	Li	Tasker	Relaxed
surface	surface type	$E_{surface}/Jm^{-2}$	surface	surface type	$E_{surface}/Jm^{-2}$
(010)	III	0.52	(201)	III	0.71
(110)	Π	0.54	(011)	III	0.75
(221)	Π	0.58	(010)	III	0.75
(120)	III	0.59	(211)	III	0.80
(021)	Π	0.62	(122)	III	0.80
(201)	III	0.63	(021)	II	0.82
(211)	III	0.63	(221)	Π	0.84
(011)	III	0.64	(212)	III	0.86
(210)	III	0.68	(120)	III	0.86
(111)	III	0.68	(100)	III	0.87
(100)	III	0.68	(101)	III	0.88
(101)	III	0.74	(111)	III	0.89
(121)	II	0.70	(210)	III	0.90
(212)	III	0.75	(110)	II	0.92
(012)	II	0.77	(112)	III	0.94
(112)	III	0.79	(012)	III	0.94
(122)	Π	0.81	(121)	Π	0.94
(102)	III	0.82	(102)	III	0.96
(001)	III	0.90	(001)	III	1.11

Table S3: Comparison of energies of low index surfaces of NaFePO₄ and LiFePO₄

Table S4: Literature survey of LiFePO₄ morphologies, dimensions and synthesis conditions.

Shape	Synthesis conditions	Particle size (single particle)	Identified surface planes, notes	Ref.
Nanoplate	Hydrothermal at 120 °C for 5 h; pH 7.56	3 µm long		1
	Hydrothermal at 220 °C for 3 h; pH ~7	$4 \mu\text{m} \times 2 \mu\text{m} \times 200$ nm	010, long in <i>c</i>	2
	Hydrothermal at 170 °C for 12 h; pH 5.15	1-2 μm long	010	3
	Hydrothermal at 190 °C for 5 h	~2 μm long	010	4
	Hydrothermal at 170 °C for 12 h; pH 6.5	~3 µm long	010	5
	Hydrothermal at 190 °C for 12 h; pH 5	~2 μm long	010	6
	Hydrothermal at 150-220 °C for 5 h; ascorbic acid	1-3 μm × 100 nm		7
H	Hydrothermal at 200 °C for 6 h; pH 10 with hydrazine	0.5 µm thick		7
	Hydrothermal at 150-175 °C; with PEG	1-3 μm × 200-300 nm		7
	Hydrothermal at 180 °C for 3 h; with PEG	~5 µm long		7
	Hydrothermal at 180 °C for 3 h, pH 8.5	$\sim 4 \ \mu m \times \sim 400 \ nm$	010	8
	Solvothermal in 3:5 ethanol/water at 180 °C for 3 h, pH 8.5	$\sim 1 \ \mu m \times \sim 200 \ nm$	010	8
	Solvothermal in 3:5 ethanol/water at 180 °C for 3 h w/C, pH 8.5	$\sim 1 \ \mu m \times \sim 200 \ nm$	010	8
	Solvothermal in 2:3 PEG400/water at 140 °C for 24 h	800 nm × 100 nm	010	9
	Solvothermal in 2:3 PEG400/water at 180 °C for 9 h	$3 \ \mu m \times 300 \ nm$	010	9
	Hydrothermal at 120 °C for 3 h	$2 \ \mu m \times 200 \ nm$	010, long in <i>c</i>	10
	Solvothermal at 170 °C for 2 h in DEG	~250 nm	100	11
	Solvothermal at 170 °C for 8 h in DEG	~600 nm (broadly distributed)		11
	Solvothermal at 170 °C for 16 h in DEG	~450 nm		11
	Solvothermal at 170 °C for 36 h in DEG	~450 nm		11
	Solvothermal at 230 °C for 6 h in DEG	$100 \times 100 \times 20$ nm	010	12
Orthorhombic or	Hydrothermal at 335 °C for 16 h with TTEG	20×40 nm	010	13
rhombic	Hydrothermal at 180 °C for 3-5 h, pH ~7 with citric acid and ammonia	5 μm		14
	Solvothermal in DEG at 230 °C for 16 h	200-250 nm × 180 nm × 100 nm		15
Rod or needle	Hydrothermal at 220C for 1 h	30 μm long		16
	Hydrothermal at 170 °C for 12 h; pH 3.5	$(\sim 2 \ \mu m \times 600 \ nm)$	Large in bc plane, long in c	5
	Microwave solvothermal in TEG at 300 °C w/ 5 min hold	$100 \text{ nm} \times 25 \text{ nm} \times ? \text{ nm}$	Long in 001, wide in 100	17
	Microwave hydrothermal at 235 °C w/ 15 min hold	$300 \times 225 \times ? \text{ nm}$	Long axis perpendicular to b	17
	Microwave solvothermal in TEG at 300 °C w/ 5 min hold	$(\sim 100 \times 30 \times ? \text{ nm})$	Long in 001, wide in 100	18
	Aqueous under reflux for 24 h at ambient pressure	$40 \text{ nm} \times 35 \text{ nm} \times 13 \text{ nm} (60 \text{ nm} \times 15 \text{ nm} \times ?)$	$010 \times 001 \times 100$	19
	Solvothermal in ionic liquids at 250 °C for 24h	$10-100\mu m \times 1\mu m$	Long in <i>b</i>	20
		Primary particles 1µm × <100nm	Primary particles long in 101	
	Reflux in TEG at 320 °C for 3-20h	15 × 50 nm - 25 × 100 nm	Long in <i>c</i>	21
	Hydrothermal at 180 °C for 3 h pH ~7	~300 nm long		10
	Reflux in TEG for 4 h	$38 \text{ nm} \times 46 \text{ nm} \times 56 \text{ nm} (68 \text{ nm} \times 26 \text{ nm})$	100, 010, 001; long in c	22
		40 nm × 20 nm × 58 nm (195 nm × 37 nm)	100, 010, 001; long in <i>c</i>	
	Reflux in tEG for 4 h	24 nm \times 25 nm \times 40 nm (90 \times 40nm)	100, 010, 001; long in c	22
		$36 \text{ nm} \times 15 \text{ nm} \times 62 \text{ nm} (600 \times 39 \text{ nm})$	100, 010, 001; long in <i>c</i>	
	Hydrothermal at 260 °C for 48 h	80-120 μm long	Long in b	23
	Hydrothermal at 260 °C for 10 days	300-350 μm long	Long in <i>b</i>	23
	Hydrothermal at 260 °C for 48 h with EMI-TFSI IL	$170 \times 50 \ \mu m$	Long in <i>b</i>	23
Tabular	Hydrothermal at 180 °C for 5 days, pH ~7 with citric acid and ammonia	$4 \mu\text{m} \times 6 \mu\text{m}$	010, 100, 101, 011	14
	Hydrothermal at 260 °C for 30 days with EMI-TFSI ionic liquid	700 um × 250um × 150 um		23

References:

- 1 S. F. Yang, P. Y. Zavalij and M. S. Whittingham, *Electrochem. Commun.*, 2001, 3, 505-508.
- 2 G. Y. Chen, X. Y. Song and T. J. Richardson, *Electrochem. Solid-State Lett.*, 2006, 9, A295-A298.
- 3 K. Kanamura, S. H. Koizumi and K. R. Dokko, J. Mater. Sci., 2008, 43, 2138-2142.
- 4 B. Ellis, W. H. Kan, W. R. M. Makahnouk and L. F. Nazar, J. Mater. Chem., 2007, 17, 3248-3254.
- 5 K. Dokko, S. Koizumi, H. Nakano and K. Kanamura, J. Mater. Chem., 2007, 17, 4803-4810.
- 6 H. Nakano, K. Dokko, S. Koizumi, H. Tannai and K. Kanamura, J. Electrochem. Soc., 2008, 155, A909-A914.
- 7 J. J. Chen, M. J. Vacchio, S. J. Wang, N. Chernova, P. Y. Zavalij and M. S. Whittingham, *Solid State Ionics*, 2008, **178**, 1676-1693.
- 8 X. Qin, X. H. Wang, H. M. Xiang, J. Xie, J. J. Li and Y. C. Zhou, J. Phys. Chem. C, 2010, 114, 16806-16812.
- 9 S. L. Yang, X. F. Zhou, J. G. Zhang and Z. P. Liu, J. Mater. Chem., 2010, 20, 8086-8091.
- 10 X. Qin, J. M. Wang, J. Xie, F. Z. Li, L. Wen and X. H. Wang, Phys. Chem. Chem. Phys., 2012, 14, 2669-2677.
- 11 J. Lim, J. Gim, S. W. Kang, S. Baek, H. Jeong and J. Kim, J. Electrochem. Soc., 2012, 159, A479-A484.
- 12 D. Kim, J. Lim, V. Mathew, B. Koo, Y. Paik, D. Ahn, S. M. Paek and J. Kim, J. Mater. Chem., 2012, 22, 2624-2631.
- 13 D. H. Kim and J. Kim, Electrochem. Solid-State Lett., 2006, 9, A439-A442.
- 14 Z. G. Lu, H. L. Chen, R. Robert, B. Y. X. Zhu, J. Q. Deng, L. J. Wu, C. Y. Chung and C. P. Grey, *Chem. Mater.*, 2011, 23, 2848-2859.
- 15 J. Lim, J. Gim, J. Kang, J. Song, H. Park, S. Baek and J. Kim, J. Electrochem. Soc., 2012, 159, A459-A463.
- 16 S. Franger, F. Le Cras, C. Bourbon and H. Rouault, J. Power Sources, 2003, 119, 252-257.
- 17 A. V. Murugan, T. Muraliganth and A. Manthiram, J. Phys. Chem. C, 2008, 112, 14665-14671.
- 18 A. V. Murugan, T. Muraliganth, P. J. Ferreira and A. Manthiram, Inorg. Chem., 2009, 48, 946-952.
- 19 P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon and C. Masquelier, *Nat. Mater.*, 2008, 7, 741-747.
- N. Recham, L. Dupont, M. Courty, K. Djellab, D. Larcher, M. Armand and J. M. Tarascon, *Chem. Mater.*, 2009, 21, 1096-1107.
- 21 S. P. Badi, M. Wagemaker, B. L. Ellis, D. P. Singh, W. J. H. Borghols, W. H. Kan, D. H. Ryan, F. M. Mulder and L. F. Nazar, *J. Mater. Chem.*, 2011, **21**, 10085-10093.
- 22 T. Azib, S. Ammar, S. Nowak, S. Lau-Truing, H. Groult, K. Zaghib, A. Mauger and C. M. Julien, J. Power Sources, 2012, 217, 220-228.
- 23 N. Recham, J. Oro-Sole, K. Djellab, M. R. Palacin, C. Masquelier and J. M. Tarascon, *Solid State Ionics*, 2012, 220, 47-52.